检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马文玉 陈谦[2] 胡宇翔[1] 闫皓楠 胡涛[1] 伊鹏[1] MA Wenyu;CHEN Qian;HU Yuxiang;YAN Haonan;HU Tao;YI Peng(Information Engineering University,Zhengzhou 450001,China;Xi’an Jiaotong University,Xi’an 710049,China;Xidian University,Xi’an 710126,China)
机构地区:[1]信息工程大学,河南郑州450001 [2]西安交通大学,陕西西安710049 [3]西安电子科技大学,陕西西安710126
出 处:《物联网学报》2024年第4期54-69,共16页Chinese Journal on Internet of Things
基 金:国家重点研发计划(No.2022YFB2901500);国家自然科学基金资助项目(No.62402373)。
摘 要:联邦算力物联网(IoT,Internet of things)旨在通过联邦学习深度融合算力与物联网资源,从而实现对泛在离散部署的海量物联网数据和异构资源的高效利用。为了应对联邦算力物联网中模型反演和梯度泄露等新兴隐私攻击威胁,学术界和产业界对差分隐私(DP,differential privacy)这一高效的隐私保护技术进行了广泛研究和应用。然而,现有差分隐私技术在设定隐私预算时,未考虑本地算力节点的数据特征和隐私预算分配公平性的问题,造成了严重的模型精度损失。因此,提出了一种面向联邦算力物联网的隐私预算自适应优化方案——基于克拉美罗下界差分隐私的联邦学习(FedCDP,federated learning based on Cramér-Rao lower bound differential privacy)。首先,基于克拉美罗下界理论分析边缘算力节点的隐私预算估计值,实现自适应隐私预算规划;其次,通过计算边缘算力节点的上传模型与算力聚合服务器的聚合模型之间的相似度和隐私预算占比,分析得到每个节点的全局贡献度,进一步联合隐私预算估计值公平实时地优化隐私预算设定。理论分析证明了该方案可确保本地模型严格遵守ε-差分隐私,并保证全局模型收敛。基于多个公开数据集上的实验结果表明,在满足相同隐私保护需求的前提下,该方案将全局模型精确度最多提升了10.19%。Federated computing power Internet of things(IoT)is designed to deeply integrate computing power with IoT resources,facilitating the efficient utilization of vast and ubiquitously dispersed IoT data and heterogeneous resources through federated learning.Faced with the threats of emerging privacy attacks,e.g.,model inversion attacks and gradient leakage attacks,the academic and industrial communities have widely investigated and applied differential privacy(DP)as an effective privacy protection technique.However,two severe challenges have not been taken into account in the existing DP budget settings,i.e.,data heterogeneity issue of local computing power nodes and the fairness of privacy budget allocation,which lead to a significant loss in model accuracy.Therefore,an adaptive optimization scheme for privacy budget was proposed in federated computing power IoT,which was called federated learning based on Cramér-Rao lower bound differential privacy(FedCDP).In specific,to adaptively adjust privacy budgets,the privacy budget estimates for edge computing power nodes based on the Cramér-Rao lower bound theory were analyzed.Furthermore,by assessing the similarity between the local model and the aggregated model,as well as their respective privacy budget proportions,the global contribution of each node was determined,which was used to fairly,also in real time,optimize and adjust the privacy budget settings in conjunction with the estimated privacy budget.Through rigorous theoretical analysis,FedCDP achievesε-DP for local models,and ensures the convergence of the global model.Experimental results on multiple public datasets show that the proposed scheme improves the accuracy of the global model by up to 10.19%under the premise of satisfying the same privacy protection requirements.
分 类 号:TP309.2[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3