基于I-LEARN模型的大学生深度学习研究  

Research on Deep Learning of University Students Based on I-LEARN Model

在线阅读下载全文

作  者:刘海涛[1] LIU Haitao(College of Education,Hebei Normal University,Shijiazhuang,Hebei 050024,China)

机构地区:[1]河北师范大学教育学院,河北石家庄050024

出  处:《河北开放大学学报》2024年第6期6-13,共8页Journal of Hebei Open University

基  金:2021年度河北省社会科学基金项目“在线学习环境下大学生深度学习的发生机制与生态系统构建研究”(HB 21 JY 009)。

摘  要:信息化社会知识在不断被数字化的同时,也在被泛在化与碎片化。在这一信息化学习场域中,大学生需要具备一定的信息素养,并通过深度学习来实现对知识的内化与创造。I-LEARN模型基于对传统信息素养的扩展与反映,通过“识别—定位—评估—应用—反思—精通”等信息行为与学习行为进行整合,为大学生深度学习提供了一个理论框架。I-LEARN模型所包含的学习活动与大学生深度学习进行关联与耦合,体现出基于信息的主体性、扩展性、反思性与建构性等学习特征。可以通过注重学习的元认知性、关注学习的情境性、加强评价的灵活性等方面为大学生深度学习提供优化路径,有助于大学生实现自我导向的学习、批判性扩展学习和统整性建构学习。While knowledge in the information society is being digitized,it is also being ubiquitous and fragmented.In the field of informatized learning,college students need to have certain information literacy and realize the internaliza-tion and creation of knowledge through deep learning.As an extension and reflection of traditional information literacy,the I-LEARN model is integrated with learning behaviors through information behaviors such as“Identify-Locate-Evaluate-Ap-ply-Reflect-kNow”,which provides a theoretical framework for college students’deep learning.The learning activities contained in the I-LEARN model are associated and coupled with the deep learning of college students,which embodies the learning characteristics of subjectivity,expansibility,reflection and constructiveness based on information.The optimization paths of college students’deep learning can be provided by paying attention to the metacognition of learning,the situation of learning,and strengthening the flexibility of evaluation,which is helpful for college students to realize self-directed learning,critical extended learning and integrated construction learning.

关 键 词:深度学习 I-LEARN模型 信息素养 信息化学习场域 

分 类 号:G434[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象