基于YOLOv8改进的下水管道障碍物识别算法  

Identification algorithm of sewer obstruction based on YOLOv8

在线阅读下载全文

作  者:吴裕发 郑少峰 WU Yufa;ZHENG Shaofeng(School of Transportation,Fujian University of Technology,Fuzhou 350118,China)

机构地区:[1]福建理工大学交通运输学院,福建福州350118

出  处:《福建理工大学学报》2024年第6期590-597,共8页JOURNAL OF FUJILAN UNIVERSITY OF TECHNOLOGY

基  金:福建省科技厅引导性项目(2021H0025)。

摘  要:为提升下水管道障碍物清理效率和管道障碍物识别准确率,提出一种基于YOLOv8改进的管道障碍物识别算法。通过优化YOLOv8目标检测模型,使其更适用于环境复杂的管道内部障碍物检测任务。在YOLOv8网络结构的基础上引入PGI模块,增加辅助可逆支路和多级辅助模块缓解信息瓶颈问题,减少精度损失;引入SCConv模块来替换C2f模块,在实现模型轻量化的情况下保持检测精度;引入Focal-Modulation模块改进了传统的SPPF模块,使模型的精度得到一定程度的提升。实验结果表明,改进后的识别算法与YOLOv8n模型相比,在mAP@0.5精度上提升4.6%,在mAP@0.5~0.95精度上提升3.9%,参数量降低33.3%,计算量减少17.3%,更加适用于下水管道障碍物的识别检测。In order to improve the cleaning efficiency of sewer pipe obstacles and the accuracy of pipeline obstacle recognition,an improved pipeline obstacle recognition algorithm based on YOLOv8 is proposed.By optimizing the YOLOv8 target detection model,the algorithm is made more suitable for obstacle detection in the complex environment inside the pipeline.Based on the network structure of YOLOv8,the PGI module proposed is introduced.The addition of auxiliary reversible branches and multistage auxiliary module in the module effectively alleviates the information bottleneck problem,as a result significantly reducing the loss of accuracy.The SCConv module is introduced to replace the C2f module to maintain the detection accuracy while realizing the lightweight of the model.The introduction of Focal-Modulation module improves the traditional SPPF module,so that the accuracy of the model is improved to a certain extent.Experimental results show that compared with YOLOv8n model,the improved recognition algorithm improves the accuracy of mAP@0.5 by 4.6%,improves the accuracy of mAP@0.5~0.95 by 3.9%,reduces the number of parameters by 33.3%,and reduces the amount of calculation by 17.3%.It is more suitable for the identification and detection of obstacles in sewer pipes.

关 键 词:目标检测 下水管道 障碍物识别 PGI SCConv Focal-Modulation 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象