检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:安哲立 王彦平 马伟斌 王勇[1,3] 李尧 彭旸[1] AN Zheli;WANG Yanping;MA Weibin;WANG Yong;LI Yao;PENG Yang(Railway Engineering Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China;China Academy of Railway Sciences Corporation Limited,Beijing 100081,China;National Engineering Research Center of System Technology for High-speed Railway and Urban Rail Transit,Beijing 100081,China;School of Information,North China University of Technology,Beijing 100144,China)
机构地区:[1]中国铁道科学研究院集团有限公司铁道建筑研究所,北京100081 [2]中国铁道科学研究院,北京100081 [3]高速铁路与城轨交通系统技术国家工程研究中心,北京100081 [4]北方工业大学信息学院,北京100144
出 处:《隧道建设(中英文)》2024年第12期2393-2402,共10页Tunnel Construction
基 金:高速铁路与城轨交通系统技术国家工程研究中心开放项目(2023YJ378);中国铁道科学研究院集团有限公司重点科研项目(2023YJ306)。
摘 要:为解决施工期间隧道掌子面附近变形及坍塌事故高发,现有监测手段数据不连续、不及时、不全面、反馈差、自动化水平低等难题,进一步提高隧道施工安全管控水平,提出一种自动化、实时、连续、大范围、三维监测的隧道安全监测技术。该技术基于激光雷达的高防护性隧道无线感知监测设备和边缘数据处理设备,应用海量点云数据洞内高效传输策略,实时获取施工隧道轮廓三维点云数据,通过围岩全断面测量值规则化、规则测点三维聚类、非连接噪点去除和基于实测围岩厚度数据统计的干扰项自动排除等技术处理,解决点云数据无序及隧道环境复杂导致的隧道点云无线传输难和计算复杂度高等难题,实现高抗干扰的变形区域自动三维定位,提前掌握变形区域,及时预警,避免重大事故发生。在模拟变形试验和掉块识别案例、区域变形识别案例等工程案例中运用该技术,自动定位了面积超过0.5 m^(2)、厚度超过2 cm的变形和掉块。结果表明:该技术能直观、可视化反映隧道掌子面变形情况,监测结果准确、可靠。Frequent deformation and collapse are common challenges during tunnel construction.However,existing monitoring methods face issues such as discontinuity,delays,incomplete data,poor feedback,and low automation.To address these problems and improve safety in tunnel construction,a new automated,real-time,continuous,large-scale,and three-dimensional monitoring technology has been developed.This technology leverages advanced wireless sensing equipment and lidar-based edge data processing devices,designed specifically for high-protection tunnel environments.By employing an efficient transmission strategy,it collects real-time three-dimensional point cloud data of the tunnel's construction profile.The system standardizes measurement values across the entire cross-section of the surrounding rock,clusters the data into three-dimensional groups,removes unconnected noise points,and automatically eliminates interference factors based on statistical analysis of surrounding rock thickness data.This approach addresses the challenges of difficult wireless transmission and the high computational demands arising from disordered point cloud data in complex tunnel environments.The technology ensures high precision,interference-resistant three-dimensional positioning of deformed areas,enabling early detection and timely warnings to prevent significant accidents.Applications of the system include simulation deformation testing,block identification,regional deformation analysis,and other engineering cases.For instance,the system can automatically detect deformations and block removals larger than 0.5 m^(2) and thicker than 2 cm.Results demonstrate that the technology provides accurate,reliable,and visually intuitive monitoring of tunnel face deformations.
分 类 号:U45[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43