检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:俎海东 焦晓峰[1] 张万福[2] 孙康 李春[2] ZU Haidong;JIAO Xiaofeng;ZHANG Wanfu;SUN Kang;LI Chun(Inner Mongolia Power Research Institute Branch,Hohhot 010020,Inner Mongolia Autonomous Region,China;School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
机构地区:[1]内蒙古电力科学研究院分公司,内蒙古呼和浩特010020 [2]上海理工大学能源与动力工程学院,上海200093
出 处:《动力工程学报》2025年第1期106-114,130,共10页Journal of Chinese Society of Power Engineering
基 金:内蒙古电力科学研究院2022年自筹项目(510241220009);国家自然科学基金资助项目(52006148)。
摘 要:针对风力机齿轮箱振动信号具有强非线性特征,提出了改进变分模态分解方法对信号进行分解以提取特征分量,并以混沌相图及Lyapunov指数量化信号的非线性变化。采用随机近邻嵌入算法对多模态非线性故障特征集的冗余特征进行降维,以保证故障特征提取的可靠性并提升故障诊断准确率,所提出的无监督故障诊断框架无需人为对故障样本进行标注,更适合工程应用,并将所提方法应用于NREL GRC风力机齿轮箱故障。结果表明:改进变分模态分解方法可准确实现多模态特征提取,结合随机近邻嵌入算法,可有效消除冗余特征保证故障信息的可靠性,且同类样本聚集、异类样本差异增大,聚类表现更清晰,提升了故障分类的准确率。Aiming at strong nonlinear characteristics of wind turbine gearbox vibration signals,an improved variational mode decomposition method was proposed to decompose signals for extracting characteristic components,and the nonlinear changes of the signal were quantified by chaotic phase portraits and Lyapunov exponent.To ensure the reliability of fault feature extraction and improve the accuracy of fault diagnosis,the random nearest neighbor embedding algorithm was used to reduce redundant features of multi-modal nonlinear fault feature sets.The proposed method was applied to NREL GRC wind turbine gearbox faults due to the unsupervised fault diagnosis framework being more suitable for engineering applications without manual marking of fault samples.Results show that the improved variational mode decomposition method can accurately extract multi-modal features.Combined with the random nearest neighbor embedding algorithm,redundant features can be effectively eliminated to ensure the reliability of fault information.Moreover,the clustering of similar samples and the difference of heterogeneous samples increase,and the clustering performance is clearer,which improves the accuracy of fault classification.
关 键 词:齿轮箱 变分模态分解 混沌相图 LYAPUNOV指数 随机近邻嵌入算法 故障诊断
分 类 号:TH133[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.218.250