基于多元线性模型的水杉树高估测方法  

An Overestimation Method for Metasequoia Height Based on Multiple Linear Models

在线阅读下载全文

作  者:刘艺[1] 王健[1] 李强 李志远[1] Liu Yi;Wang Jian;Li Qiang;Li Zhiyuan(College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao 266590,Shandong,China;Liaocheng Geological Mineral Resources Survey and Monitoring Center,Liaocheng 252000,Shandong,China)

机构地区:[1]山东科技大学测绘与空间信息学院,山东青岛266590 [2]聊城市地质矿产调查监测中心,山东聊城252000

出  处:《应用激光》2024年第12期126-137,共12页Applied Laser

摘  要:针对现有的树高估测模型大多是以单个参数与树高构建模型关系,模型的决定系数R2拟合优度不高、精度较为粗略的问题,提出一种基于多元线性模型的多参数组合树高估测方法。该方法采用多元线性模型以不同的参数组合形式得到估测的水杉树高,提高树高估测精度,较好地解决了单参数模型估测树高拟合优度不高的问题。此外,引入多时序的水杉行道树数据集,并将其进行试验验证,实验结果表明:在多参数组合中,胸径与枝下高的组合所得树高与实际树高的拟合优度为0.984,相较于单参数树高估测模型拟合优度提高了0.3~0.4。基于单木结构参数提高了估测树高的精度约30%~40%,且树高生长趋势符合成熟林水杉生长趋势。In view of the fact that most of the existing tree height estimation models are based on a single parameter and tree height,the R?goodness of fit of the model is not high and the accuracy is relatively rough.In this paper,a multi-parameter combined tree height estimation method based on multiple linear model is proposed.In this method,the height of Metasequoia glyptostroboides is estimated by multiple linear model with different parameter combinations,which improves the accuracy of tree height estimation and solves the problem of low goodness of fit of tree height estimated by single parameter model.In addition,in this paper a multi-time series Metasequoia street tree dataset is introduced and tested it through this method.The experimental results show that the goodness of fit between tree height and actual tree height obtained by the combination of diameter at breast height and subbranch height in multi-parameter combination is O.984.Compared to the single parameter models,the goodness of fit increases by 0.3 to 0.4.Based on the parameters of individual tree structures,the accuracy of tree height estimation improves by approximately 30%to 40%,and the estimated growth trend aligns with that of mature Metasequoia forests.

关 键 词:点云 多元线性模型 多参数 树高估测 

分 类 号:TN249[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象