检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李书辞 岳树岭[2] LI Shuci;YUE Shuling(Department of Information Engineering,Henan Vocational College of Water Conservancy and Environment,Zhengzhou 153000,China;College of Statistics and Big Data,Henan University of Economics and Law,Zhengzhou 450016,China)
机构地区:[1]河南水利与环境职业学院信息工程学院,郑州153000 [2]河南财经政法大学统计与大数据学院,郑州450016
出 处:《机械设计与研究》2024年第6期296-302,共7页Machine Design And Research
基 金:河南省科技攻关计划项目(222102320062)。
摘 要:针对复杂环境无人机三维航迹规划精度差、收敛慢及易生成局部最优的不足,提出多策略改进蛇群优化器的无人机三维航迹规划算法。建立了航迹规划的约束条件及目标代价函数,将三维航迹规划转换为目标函数优化问题。为了提升蛇群优化器SO的性能,设计改进Sine混沌映射提高初始种群质量和遍历性,设计非线性切换概率阈值实现种群战斗/交配模式自适应切换,引入学习因子自适应调节提升种群学习能力,并结合精英选择和模拟退火算法提升迭代后期种群多样性以避免停滞于局部最优。利用改进蛇群优化器求解无人机三维航迹规划问题,建立简单和复杂场景对算法有效性进行验证。结果表明,改进算法的规划航迹代价更低,规划效率得到有效提升。A multi-strategy improved snake swarm optimizer based unmanned aerial vehicle(UAV)3D trajectory planning algorithm is proposed to address the shortcomings of poor accuracy,slow convergence and easy generation of local optimum in complex environments.This work establishes constraints and objective cost functions for path planning,and transforms 3D path planning into an optimization problem for objective function.In order to improve the performance of the snake swarm optimizer,an improved Sine chaotic map is designed to improve the initial population quality and ergodicity.A nonlinear switching probability threshold is designed to achieve adaptive switching of population combat/mating modes.A learning factor adaptive adjustment is introduced to enhance the population learning ability.And in the later stage of iteration,an elite selection and simulated annealing algorithm are combined to enhance population diversity to avoid search stagnation at a local optimum.The improved snake swarm optimizer is used to solve the three-dimensional trajectory planning problem of unmanned aerial vehicles,and the effectiveness of the algorithm is verified by establishing simple and complex scenarios.The results show that the improved algorithm has lower cost for planning path and can effectively improve the planning efficiency.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31