一种改进YOLOv5的轻量化垃圾检测算法  

An Improved Lightweight Garbage Detection Algorithm for YOLOv5

在线阅读下载全文

作  者:万涛 李博[1] 相雨涛 WAN Tao;LI Bo;XIANG Yutao(Key Laboratory of Instrumental Science and Dynamic Testing,Ministry of Education,North University of China,Taiyuan 030051,China)

机构地区:[1]中北大学仪器科学与动态测试教育部重点实验室,太原030051

出  处:《计算机测量与控制》2025年第1期20-28,共9页Computer Measurement &Control

基  金:国家自然科学基金(61471325);国家自然科学基金青年科学基金(52006114)。

摘  要:生活垃圾及其危害已引起人们的关注,而机器人与目标检测技术的发展为生活垃圾的自动化处理带来了可能性;针对目前生活垃圾检测算法在背景复杂、目标尺寸多样的情况下检测精度低,模型参数量大,深度学习检测算法综合性能不平衡以及在嵌入式设备难以部署等问题,提出了一种改进YOLOv5的轻量化垃圾检测算法;在YOLOv5模型中用GSConv模块代替传统卷积降低计算复杂度,引入了CBAM注意力机制,以提取和融合空间和通道信息,增强了网络对目标的表达能力,通过权重量化将模型进行压缩以减少模型大小加快推理速度;实验结果表明,相比于原始的YOLOv5算法,改进算法在模型的准确率和平均精确度分别提高了3%和2.3%,文件大小减小了26.6%,综合性能超越了传统的深度学习目标检测算法,对嵌入式平台更加友好。Domestic waste and its hazards have attracted people s attention,the development of robots and objection detection technology has brought possibilities for automatic processing domestic waste.In light of the problems such as the low detection accuracy of current domestic waste detection algorithms in complex backgrounds and diverse target sizes,the large number of model parameters,the imbalance in the comprehensive performance of deep learning detection algorithms,and the challenges in deployment on embedded devices,an lightweight garbage detection algorithm based on improved YOLOv5 is proposed.In the YOLOv5 model,the GSConv module is replaced by the traditional convolution to reduce computational complexity.The CBAM attention mechanism is introduced to extract and fuse spatial and channel information,thereby strengthening the expressive capacity of the network on the target.The model is compressed via weight quantization to reduce the model size and accelerate the inference speed.Experimental results show that compared with the original YOLOv5 algorithm,the improved algorithm increases the accuracy and average precision of the model by 3%and 2.3%,respectively,reduces the file size by 26.6%,and its comprehensive performance is superior to that of traditional deep learning object detection algorithms,with a greater friendliness to embedded platforms.

关 键 词:GSConv 目标检测 轻量化 嵌入式设备 权重量化 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP36[自动化与计算机技术—计算机科学与技术] X799[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象