一种面向SAR图像多尺度舰船目标的检测算法  

Detection Algorithm for Multi-scale Ship Targets in SAR Images

在线阅读下载全文

作  者:宋浩生 甘精伟[1] 虞华 王琳 秘璐然 SONG Haosheng;GAN Jingwei;YU Hua;WANG Lin;MI Luran(The 54th Research Institute of CETC,Shijiazhuang 050081,China)

机构地区:[1]中国电子科技集团公司第54研究所,石家庄050081

出  处:《计算机测量与控制》2025年第1期211-217,225,共8页Computer Measurement &Control

摘  要:在合成孔径雷达图像的舰船目标检测任务中,不同目标的尺度多样性给检测算法带来了巨大挑战;为了解决多尺度舰船目标检测难题,提出了一种BAPT-YOLOv8n算法,该算法以YOLOv8n为基础框架,通过引入卷积块注意力模块重构颈部金字塔网络,提升了对多层次特征的融合能力与对多尺度目标的特征提取能力;此外,采用基于Transformer的检测头结构,进一步提高特征表示能力和上下文信息利用能力,从而改善了小目标的检测效果;在HRSID数据集和SSDD数据集上的对比实验表明,所提算法在检测精度上分别达到93.6%与98.9%,优于其他对比算法;消融实验进一步验证了算法中各改进部分的有效性,表明该算法能够更好适应多尺度舰船目标检测问题。In ship target detection in synthetic aperture radar(SAR)images,different targets with diverse scales have brought significant challenges to detection algorithms.To address these issues,a BAPT-YOLOv8n algorithm is proposed.Taken the YOLOv8n as a framework,convolutional block attention modules are introduced to reconstruct the neck pyramid network,and to enhance the fusion capability of multi-level features and the feature extraction capability for multi-scale targets.Additionally,the Transformer-based detection head structure is used to further improve the abilities of feature representation and context utilization,thereby enhancing the detection performance of small targets.Comparative experiments on the HRSID and SSDD datasets show that,compared with other algorithms,the proposed algorithm achieves the detection accuracy of 93.6%and 98.9%,respectively.The ablation experiments further validate the effectiveness of the improved algorithm,the results show that this algorithm can better adapt multi-scale ship target detection tasks.

关 键 词:合成孔径雷达 舰船检测 深度学习 注意力金字塔 TRANSFORMER 

分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象