检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王展 陈思阳 王子男 张珂[1,2] WANG Zhan;CHEN Siyang;WANG Zinan;ZHANG Ke(School of Mechanical Engineering,Shenyang Jianzhu University,Shenyang 110168;School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870)
机构地区:[1]沈阳建筑大学机械工程学院,沈阳110168 [2]沈阳工业大学机械工程学院,沈阳110870
出 处:《机械工程学报》2024年第23期189-204,共16页Journal of Mechanical Engineering
基 金:国家自然科学基金(52205117,52175107);辽宁省“兴辽英才计划”战略科技人才(XLYC2203015);辽宁省科技厅基础研究(2023JH2/101300133)资助项目。
摘 要:陶瓷轴承在运行过程中由于部件长期磨损会导致表面呈现波纹,而轴承内部温升会使波纹形貌产生热变形。所造成的表面波纹动态变化会加剧轴承-转子系统的振动并引起系统的不稳定。针对这一问题,提出一种动态的波纹模型,并建立12自由度的陶瓷轴承-转子系统的动力学模型。采用Newton-Raphson和Newmark-β嵌套迭代的求解方法将拟静力学模型和动力学模型进行结合。运用分岔图,相轨迹,轴心轨迹,庞加莱映射等分析转速,热变形,波纹幅值,波数等对系统非线性振动的影响。结果表明,波纹幅值的增加导致失稳区域的中心向高速区间移动,且扩大了热变形的影响范围。热变形增大了高速区间的失稳区域宽度。波数的变化会导致频谱幅值的大小顺序发生改变,越接近滚动体个数的整数倍,振动越不稳定。该研究为进一步探究陶瓷轴承及转子系统的动态运行机理并为其优化设计奠定理论基础。During operation of ceramic bearings,long-term wear of the components leads to waviness on the surface,while the temperature rises inside the bearing causes thermal deformation of the waviness shape.Resulting dynamic changes in surface waviness can increase the vibration of the bearing-rotor system and cause system instability.To target this problem,a dynamic waviness model is proposed.And the dynamics model of the ceramic bearing-rotor system with 12 degrees of freedom is established.The Newton-Raphson and Newmark-βnested iterative solution methods are used to combine the quasi-static and dynamic models.Analyze the effects of rotational speed,thermal deformation,waviness amplitude,wave number on the nonlinear vibration of the system by using bifurcation diagrams,phase trajectories,axis orbits,and Poincaré.The results show that the increase of the waviness amplitude causes the center of the instability region to move toward the high-speed interval and expands the influence of thermal deformation.The thermal deformation enlarges the width of the instability region in the high-speed interval.The change in the wave number leads to a change in the order of magnitude in the spectrum amplitude,and the closer to an integer multiple of the number of rolling elements,the more unstable the vibration gets.This study provides a theoretical basis for further investigation of the dynamic operation mechanism and optimal design for ceramic bearings and rotor systems.
分 类 号:TG156[金属学及工艺—热处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31