环卫车辆轨迹跟踪系统的改进无模型自适应控制  

Improved Model-free Adaptive Control of the Track Tracking System for Sanitation Vehicles

作  者:陈嘉朋 赵武 周伟 严达 CHEN Jiapeng;ZHAO Wu;ZHOU Wei;YAN Da(Dongfeng Commercial Vehicle Technical Center,Wuhan 430056,China)

机构地区:[1]东风商用车技术中心,湖北武汉430056

出  处:《汽车电器》2025年第2期9-13,17,共6页Auto Electric Parts

摘  要:文章针对环卫车辆轨迹跟踪系统机理建模复杂、模型时变、跟踪控制精度要求高等问题,提出一种基于数据驱动的偏格式动态线性化的改进无模型自适应控制方案(iPFDL-MFAC)。首先,采用无模型自适应控制理论中的伪梯度概念,将难以精确建模的环卫车辆轨迹跟踪系统沿时间轴方向动态线性化,得到等效的偏格式数据驱动模型;其次,设计带有时变比例控制项和时变积分控制项的偏格式无模型自适应控制算法,同时制定对应的伪梯度参数估计策略以及伪梯度参数估计重置算法,这大大增强了控制方案的通用性、灵活性与自适应性。在此基础上,将iPFDL-MFAC方案与传统的无模型控制方法进行对比分析。仿真结果表明,在相同的控制参数下,iPFDL-MFAC方案具有更快跟踪响应较小的超调,能有力验证所提方法的有效性。Aiming at the problems of complex mechanism modeling,time-varying model and high tracking control accuracy,an improved model-free adaptive control scheme(iPFDL-MFAC)based on data-driven partial format dynamic linearization was proposed in this paper.Firstly,the pseudo-gradient concept in model-free adaptive control theory is used to linearize the trajectory tracking system of sanitation vehicle along the time axis,which is difficult to model accurately,and an equivalent partial format data-driven model is obtained.Secondly,the partial format model-free adaptive control algorithm with time-varying proportional control and time-varying integral control is designed,and the corresponding pseudo-gradient parameter estimation strategy and pseudo-gradient parameter estimation reset algorithm are developed,which greatly enhances the universality,flexibility and adaptability of the control scheme.On this basis,the iPFDL-MFAC scheme is compared with the traditional model-free control method.The simulation results show that under the same control parameters,the iPFDL-MFAC scheme has faster tracking response and smaller overshoot,which can effectively verify the effectiveness of the proposed method.

关 键 词:环卫车辆 数据驱动控制 无模型自适应控制 非线性系统 偏格式动态线性化 

分 类 号:U463.675[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象