基于拉普拉斯混合模型的航迹抗差关联方法  

An Anti-bias Track Association Algorithm Based onLaplace Mixture Model

在线阅读下载全文

作  者:韦春玲 吴孙勇[2,3] 刘锦新 余润华 WEI Chunling;WU Sunyong;LIU Jinxin;YU Runhua(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China;School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin 541004,China;Ministry of Education Key Laboratory of Cognitive Radio and Information Processing,Guilin 541004,China)

机构地区:[1]桂林电子科技大学信息与通信学院,广西桂林541004 [2]桂林电子科技大学数学与计算科学学院,广西桂林541004 [3]认知无线电与信息处理省部共建教育部重点实验室,广西桂林541004

出  处:《电讯技术》2025年第2期313-321,共9页Telecommunication Engineering

基  金:国家自然科学基金资助项目(62371149,62263007);广西科技重大专项(AA20302001);广西无线宽带通信与信号处理重点实验室基金(GXKL06190117);认知无线电与信息处理教育部重点实验室基金(CRKL180106,CRKL220107,CRKL210101);桂林电子科技大学校级研究生创新项目(2023YCXS108)。

摘  要:针对组网雷达系统误差与上报目标不完全一致等复杂环境下的航迹关联鲁棒性问题,基于非刚性点集配准理论提出了一种航迹邻域结构信息与拉普拉斯混合模型(Laplace Mixture Model, LMM)相结合的关联方法。首先利用更鲁棒的拉普拉斯混合模型对被视为异常点的非共同探测目标的航迹进行建模,然后定义局部相似性测度计算航迹邻域结构的相似性来决定拉普拉斯分量的权重,并通过期望最大化(Expectation-Maximization, EM)算法求解拉普拉斯混合模型的闭合解。最后利用经典分配法对E步获取的后验概率矩阵进行航迹关联判决。仿真结果表明,该方法在面对各种复杂环境如不同系统误差、检测概率、目标分布密度等情况时均有较高的关联正确率和较好的鲁棒性。In order to solve the robustness issue of track association in complex environments with system errors and incomplete consistency with reported targets in networked radar system,according to the non-rigid point set registration theory,an association method which combines the neighborhood structural information of the track and the Laplace Mixture Model(LMM)is proposed.The trajectories of non-cooperative detection targets,deemed as outliers,are initially modeled by a more robust LMM.Then,a local similarity measurement is defined to calculate the similarity of track neighborhood structures to determine the weights of Laplace components,and the closed-form solution of the LMM is obtained through the Expectation-Maximization(EM)algorithm.Finally,a classical assignment method is employed to make track association decisions based on the posterior probability matrix obtained from the expectation step.Simulation results demonstrate that the proposed algorithm achieves high association accuracy and robustness when confronted with various complex environments,such as different system errors,detection probabilities,and target distribution densities.

关 键 词:组网雷达系统 航迹关联 拉普拉斯混合模型 局部相似性测度 EM算法 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象