A Multi-Scale Attention-Based Pedestrian Detection Method for Roadways Using the YOLOv5 Framework  

在线阅读下载全文

作  者:Ruihan Wang Boling Liu Tingyu Liao 

机构地区:[1]School of Software Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China

出  处:《Journal of Electronic Research and Application》2025年第1期224-232,共9页电子研究与应用

摘  要:Due to multi-scale variations and occlusion problems,accurate traffic road pedestrian detection faces great challenges.This paper proposes an improved pedestrian detection method called Multi Scales Attention-YOLOv5x(MSA-YOLOv5x)based on the YOLOv5x framework.Firstly,by replacing the first convolutional operation of the backbone network with the Focus module,this method expands the number of image input channels to enhance feature expressiveness.Secondly,we construct C3_CBAM module instead of the original C3 module for better feature fusion.In this way,the learning process could achieve more multi-scale features and occluded pedestrian target features through channel attention and spatial attention.Additionally,a new feature pyramid detection layer and a new detection channel are embedded in the feature fusion part for enhancing multi-scale pedestrian detection accuracy.Compared with the baseline methods,experimental results on a public dataset demonstrate that the proposed method achieves optimal detection accuracy for traffic road pedestrian detection.

关 键 词:YOLOv5 PEDESTRIAN Detection FEATURE FUSION 

分 类 号:G63[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象