基于改进YOLOv5算法的道路坑洼检测方法  

Pothole detection method based on improved YOLOv5 algorithm

在线阅读下载全文

作  者:张刚 唐戬 杨小双 杨扬 秦贵斌 樊劲辉 ZHANG Gang;TANG Jian;YANG Xiao-shuang;YANG Yang;QIN Gui-bin;FAN Jin-hui(School of Electrical Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,China;College of Science and Information Science,Qingdao Agricultural University,Qingdao 266109,China)

机构地区:[1]河北科技大学电气工程学院,河北石家庄050018 [2]青岛农业大学理学与信息科学学院,山东青岛266109

出  处:《计算机工程与设计》2025年第2期554-561,共8页Computer Engineering and Design

基  金:国家自然科学基金项目(51507048);河北省重点研发计划基金项目(20326628D);河北省引进国外智力基金项目(1200343)。

摘  要:针对目前已有目标检测算法在路面坑洼养护应用较少,且存在检测模型参数量较大、小目标容易漏检的问题提出一种改进的YOLOv5的算法。在主干(Backbone)层采用轻量化卷积GhostConv代替原有的标准卷积,减少模型参数;在颈部(Neck)层加入卷积GSConv和改进的注意力机制GSECA以及改进的双向融合模型BiFPN-m,增强特征信息提取与融合能力;将损失函数替换为EIOU Loss,提高小目标的检测精度。改进后的YOLOv5算法的mAP提高了3.1%,参数量降低了40%,为路面智能化养护提供了一种解决方案。An improved YOLOv5 algorithm was proposed to solve the problems that the existing target detection algorithms are rarely used in road surface pothole maintenance,and there are problems with large detection model parameters and small targets that are easy to miss.In the Backbone layer,lightweight convolution GhostConv was used to replace the original standard convolution,effectively reducing model parameters.In the Neck layer,convolution GSConv,improved attention mechanism GSECA and improved bidirectional fusion model BiFPN-m were added to enhance feature information extraction and fusion capabilities.The loss function was replaced with EIOU Loss to improve the detection accuracy of small targets.The mAP of the improved YOLOv5 algorithm is increased by 3.1%,and the parameter volume is reduced by 40%,providing a solution for intelligent road maintenance.

关 键 词:路面坑洼 主干层 颈部层 轻量化 注意力机制 双向融合模型 损失函数 

分 类 号:TP389.1[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象