AIGC驱动下人力资源管理实验平台优化与创新  

Optimization and innovation of human resource management experiment platform driven by Artificial Intelligence Generated Content

在线阅读下载全文

作  者:林孔团[1] 郑松毅 卢承财 LIN Kongtuan;ZHENG Songyi;LU Chengcai(School of Economics,Fujian Normal University,Fuzhou 350117,China;Fuzhou University of International Studies and Trade,Fuzhou 350202,China)

机构地区:[1]福建师范大学经济学院,福建福州350117 [2]福州外语外贸学院,福建福州350202

出  处:《实验室科学》2025年第1期225-230,共6页Laboratory Science

基  金:教育部产学合作协同育人项目(项目编号:202002308026);福建师范大学本科教育教学研究项目(项目编号:2024015)。

摘  要:针对传统人力资源管理实验平台存在的实验内容简化、缺乏现实复杂性,实验过程等待环节多、智能化不足,实验设计缺乏新颖性和趣味性,以及实验评价不够及时全面等问题,生成式人工智能(AIGC)技术为实验平台优化与创新开辟了新的思路。通过重新定位实验目标与要求,结合先进的AIGC技术,深化学科交叉与融合,优化实验设计与内容,构建一个更加契合企业经营环境、实验内容丰富、智能高效、新颖有趣、富有个性、评价科学且具有创新性的实验教学平台。该实验教学平台将理论知识与实践操作紧密结合,提高学生对理论知识的系统理解和掌握,提升学生综合实践能力、团队合作、创新思维和数智化能力,达到更好的实验教学效果。In response to the issues present in traditional human resource management experimental platforms,such as oversimplification of experimental content,lack of real-world complexity,excessive waiting times during the experimental process,insufficient intelligence,lack of novelty and interest in experimental design,as well as untimely and incomprehensive evaluation,Artificial Intelligence Generated Content(AIGC)technology has opened up new avenues for the optimization and innovation of these platforms.By repositioning the goals and requirements of experiments,integrating advanced AIGC technology,deepening interdisciplinary integration,and optimizing experimental design and content,we can construct a more enterprise-environment-adapted,content-rich,intelligent and efficient,novel and engaging,personalized,scientifically evaluated,and innovative experimental teaching platform.This experimental teaching platform seamlessly integrates theoretical knowledge with practical operations,enabling students to systematically understand and master theoretical knowledge,while enhancing their comprehensive practical abilities,teamwork skills,innovative thinking,and digital intelligence capabilities,thereby achieving better experimental teaching outcomes.

关 键 词:生成式人工智能 人力资源管理 实验平台 智能体 

分 类 号:G482[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象