基于事件触发的Vienna整流器模型预测控制  

MODEL PREDICTIVE CONTROL OF VIENNA RECTIFIER BASED ON EVENT-TRIGGERED

在线阅读下载全文

作  者:党超亮 蒋泽豪 王艺华 同向前[1] 刘丁[2] 宋卫章[1] Dang Chaoliang;Jiang Zehao;Wang Yihua;Tong Xiangqian;Liu Ding;Song Weizhang(School of Electrical Engineering,Xi’an University of Technology,Xi’an 710054,China;School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,China)

机构地区:[1]西安理工大学电气工程学院,西安710054 [2]西安理工大学自动化与信息工程学院,西安710048

出  处:《太阳能学报》2025年第2期272-281,共10页Acta Energiae Solaris Sinica

基  金:陕西省科技计划青年项目(2022JQ-512);电力设备电气绝缘国家重点实验室资助(EIPE21201)。

摘  要:针对应用于Vienna整流器的有限集模型预测控制(FCS-MPC)存在并网电流纹波大、计算资源占用度高等问题,提出一种基于事件触发的Vienna整流器模型预测控制策略(ET-MPC)。首先,通过构建系统状态和动态事件触发条件之间的解析表达方程,揭示误差阈值对触发条件和静态性能的影响机理;其次,利用系统状态实时反馈设置跟踪电流误差阈值的事件触发条件以减少系统计算复杂度并改善网侧电流质量;最后,从静态、暂态和改变动态系数等多个维度进行仿真和实验的对比分析,结果表明,所提方法能有效改善并网电流质量,同时降低计算资源负担与开关损耗,具有良好的稳态和动态性能。Aiming at the problems of large grid-connected current ripple and high computational resource occupation of finite set model predictive control(FCS-MPC)applied to Vienna rectifier,this paper proposes an event triggered-model predictive control strategy(ET-MPC)for Vienna rectifier.Firstly,by constructing an analytical expression equation between system state and dynamic event triggering conditions,the impact mechanism of error threshold on triggering conditions and static performance is revealed.Secondly,using real-time feedback from system state to set event triggering conditions for tracking current error thresholds to reduce system computational complexity and improve grid side current quality.Finally,simulation and experimental comparisons were conducted from multiple dimensions such as static,transient,and changing dynamic coefficients.The results show that the proposed method can effectively improve the quality of grid connected current,while reducing the burden of computing resources and switching losses,and has good steady-state and dynamic performance.

关 键 词:VIENNA整流器 模型预测控制 事件触发 开关损耗 多目标优化 直流电力传输 

分 类 号:TM46[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象