基于深度学习的异状零件抓取检测方法  

Grasping detection method of irregular shaped parts based on deep learning

作  者:孙先涛 杨茵鸣 王辰 陈文杰 胡祥涛 陈伟海[2] SUN Xiantao;YANG Yinming;WANG Chen;CHEN Wenjie;HU Xiangtao;CHEN Weihai(School of Electrical Engineering and Automation,Anhui University,Hefei 230601,China;School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China)

机构地区:[1]安徽大学电气工程与自动化学院,安徽合肥230601 [2]北京航空航天大学自动化科学与电气工程学院,北京100191

出  处:《计算机集成制造系统》2025年第2期490-498,共9页Computer Integrated Manufacturing Systems

基  金:国家自然科学基金资助项目(52005001)。

摘  要:针对加工零件存在残缺导致视觉系统无法准确定位而严重影响中小型企业生产自动化推广的问题,提出一种异状零件抓取检测方法。先基于深度学习设计一个关键点检测模型(KPDM)以检测不同异状零件的抓取关键点,再根据关键点位置信息和手眼标定参数设计一个位姿求解模块以解算出零件的抓取位姿。KPDM结合了图像分割模型Deeplab V3+的架构和热力图监督方式,可以通过输入的零件图像获取抓取关键点热力图。实验结果表明,该抓取方法可以在不同光照环境下准确预测完整零件和残缺零件的抓取位姿,其中两种零件的检测成功率分别为97.2%和92.7%。The problems that the visual system cannot accurately locate parts due to the defects of machined parts have seriously affected the promotion of production automation in small and medium-sized enterprises.To solve this problem,a grasping detection method for abnormal parts was proposed.A Key Point Detection Model(KPDM)based on deep learning was designed to detect the grasping key points of different parts,and then a pose solving module was designed according to the key point position information and hand-eye calibration parameters to calculate the grasping pose of the parts.By combining the architecture of the image segmentation model Deeplab V3+with the heatmap supervision method,KPDM could capture keypoints from input images.The experimental results showed that the proposed visual grasping system could accurately estimate the position and orientation of parts with different shapes.Taking the electric iron soleplates as examples,the detection success rates for complete and incomplete soleplates in different lighting environments were 97.2%and 92.7%respectively.

关 键 词:机器人抓取 深度神经网络 位姿检测 关键点检测 热力图 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TP391.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象