基于Wiener通用退化模型的刀具使用寿命预测分析  

Analysis of Tool Life Prediction Based on Wiener's Generalized Degradation Model

在线阅读下载全文

作  者:李文丽 习姗 Li Wenli;Xi Shan(School of Mechanical and Electrical Engineering,Xinyang Art Vocational College,Xinyang Henan 464000,China)

机构地区:[1]信阳艺术职业学院机电学院,河南信阳464000

出  处:《机械管理开发》2025年第2期23-24,27,共3页Mechanical Management and Development

摘  要:为了进一步解决当前剩余寿命预测算法对多传感器融合预测面临的问题,构建一种利用多传感器融合的刀具寿命预测方法。通过多传感器检测结果对模型开展联合更新,根据上述多传感器数据完成剩余寿命的准确预测。各传感器检测生产都是相同状态发生退化时形成的系统响应,根据数据关联程度利用数据驱动方式确定多源观测参数和状态序列映射关系。根据刀具寿命预测曲线可知,采用此方法得到的模型预测结果获得了接近实际值的预测结果,表明采用此方法获得更准确预测效果。该研究有助于提高机械制造效率,具有很高的实际意义。In order to further end the problems faced by the current residual life prediction algorithm for multi-sensor fusion prediction,a tool life prediction method using multi-sensor fusion is constructed.Through the multi-sensor detection results on the model to carry out joint updates,according to the above multi-sensor data to complete the accurate prediction of the remaining life.Each sensor detects the production of the system response formed when the same state is degraded,and the data-driven approach is utilized to determine the mapping relationship between the multi-source observation parameters and the state sequence according to the degree of data correlation.According to the tool life prediction curve,it can be seen that the model prediction results obtained using this method obtained close to the actual value of the prediction results,indicating that the use of this method to obtain more accurate prediction results.This research helps to improve the efficiency of machinery manufacturing and has high practical significance.

关 键 词:刀具 剩余寿命预测 多传感器融合 退化模型 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象