基于改进YOLOv8的矿卡司机疲劳驾驶检测  

Mining truck driver fatigue driving detection based on improved YOLOv8

在线阅读下载全文

作  者:顾清华[1,2] 殷书檀 王丹 李学现[1,2] 尹慧民 GU Qinghua;YIN Shutan;WANG Dan;LI Xuexian;YIN Huimin(School of Resource Engineering,Xi'an University of Architecture and Technology,Xi'an Shaanxi 710055,China;Key Laboratory of Perception,Computing and Decision Making for Intelligent Industry,Xi'an Shaanxi 710055,China;Hami Hexiang Industry and Trade Co.,Ltd.,Hami Xinjiang 839200,China)

机构地区:[1]西安建筑科技大学资源工程学院,陕西西安710055 [2]西安市智慧工业感知、计算与决策重点实验室,陕西西安710055 [3]哈密市和翔工贸有限责任公司,新疆哈密839200

出  处:《中国安全科学学报》2025年第1期60-66,共7页China Safety Science Journal

基  金:国家自然科学基金资助(52374135);金属矿智能开采理论及技术创新团队项目(2023-CX-TD-12)。

摘  要:为解决露天矿区卡车司机疲劳驾驶检测漏检率和误检率高、鲁棒性较差的问题,构建基于改进YOLOv8的露天矿卡车司机疲劳驾驶检测模型(EBS-YOLO),提高疲劳检测的整体性能。首先,以YOLOv8为疲劳检测基础模型,通过添加小目标检测层,增强模型对小目标关注;其次,引入瓶颈注意力(BAM)模块,强化模型对小目标特征提取能力,尤其是对眼部特征提取能力;最后,将主干网络中跨阶段聚合模块(C2f)全部替换为高效多尺度注意力(EMA)模块,进而有效降低模型参数量和计算开销,以满足模型轻量化需求。结果表明:改进后的YOLOv8模型检测效果较好,准确率、召回率、平均检测精度分别达到了93.6%、93.9%、96.5%,且模型内存大小仅有4.9 MB。相比于YOLOv8模型,改进后的模型能够快速准确识别出矿卡司机疲劳状态,满足实时性要求,从而有效预防疲劳驾驶事故发生。To address the high rates of missed detections and false alarms,as well as the poor robustness in fatigue driving detection for open-pit mine truck drivers,a fatigue driving detection model for mine truck drivers(EBS-YOLO)based on the improved YOLOv8 is constructed to enhance the overall performance of fatigue detection.Firstly,YOLOv8 was used as the basic model for fatigue detection,and a small target detection layer was added to enhance the model's attention to small targets.Secondly,the bottleneck attention module(BAM)was used to improve the model performance to extract small target features,especially eye features.Finally,all cross-stage aggregation modules(C2f)in the backbone network were replaced with efficient multi-scale attention(EMA)modules,thereby effectively reducing model parameters and computational overhead to meet the requirements of a lightweight model.The results showed that the improved YOLOv8 model had a great detection effect with the accuracy,recall rate,and average detection accuracy reaching 93.6%,93.9%,and 96.5%,respectively,and the memory size of the model was only 4.9 MB.Compared with the YOLOv8 model,the improved model can quickly and accurately identify the fatigue state of mining truck drivers,meet real-time requirements,and effectively prevent fatigue-driving accidents.

关 键 词:露天矿 疲劳驾驶检测 卡车司机 小目标检测 YOLOv8 

分 类 号:X910[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象