检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄海新 贺朝 程寿山 许瑞宁 张连振[4] HUANG Haixin;HE Zhao;CHENG Shoushan;XU Ruining;ZHANG Lianzhen(School of Civil Engineering and Transportation,Hebei University of Technology,Tianjin 300131,China;National Engineering Laboratory of Bridge Safety and Technology(Beijing),Research Institute Highway Ministry of Transport,Beijing 100080,China;Taihang Innovation Research Institute,Hebei Provincial Communications Planning,Design and Research Institute Co.,Ltd.,Shijiazhuang 050200,Hebei,China;School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin 150001,Heilongjiang,China)
机构地区:[1]河北工业大学土木与交通学院,天津300131 [2]交通运输部公路科学研究所桥梁结构安全技术国家工程实验室(北京),北京100080 [3]河北省交通规划设计研究院有限公司太行创新研究院,河北石家庄050200 [4]哈尔滨工业大学交通科学与工程学院,黑龙江哈尔滨150001
出 处:《重庆交通大学学报(自然科学版)》2025年第2期18-24,60,共8页Journal of Chongqing Jiaotong University(Natural Science)
基 金:桥梁结构安全技术国家工程实验室开放课题(2021-GJKFKT);旧桥检测与加固交通行业重点实验室(北京)开放课题(2020-JQKFKT-3);天津市交通运输科技发展计划项目(2022-48);交通基础设施智慧运维技术装备研发与应用示范项目(2023-420)。
摘 要:锈蚀检测算法是钢桥管养从人工视觉向机器视觉转型的关键,更是智能化钢桥检测机器人构建的技术基础。面向钢桥智能检测机器人对锈蚀检测算法低能耗和高精度的实际需求,针对DeepLabV3+模型加以改进,采用MobileNetV2主干网络替换原模型中的Xception主干网络,使模型轻量化以易适配移动端设备,优化ASPP模块中的空洞率以提高网络对不同尺寸锈蚀的提取效果,添加CBAM注意力机制增强模型对关键特征的感知和捕捉;将改进后的DeepLabV3+模型与原DeepLabV3+模型、PSPNet模型和U-Net模型进行了对比,同时开展了消融实验;最后,将改进模型搭载于视觉机器人上,并开展实地工程测试。结果表明:相比于其它模型,改进的DeepLabV3+模型对钢桥锈蚀图像的分割准确率平均提高了7.5%,平均交并比平均提高了14.7%,召回率平均提高了9.1%。The rust detection algorithm is the key to the transformation of steel bridge maintenance from artificial vision to machine vision,and it is also the technical foundation for the construction of intelligent steel bridge detection robots.In order to meet the practical requirements of low energy consumption and high accuracy of rust detection algorithms for steel bridge intelligent detection robots,the DeepLabV3+model was improved.The MobileNetV2 backbone network was used to replace the Xception backbone network in the original model,making the model lightweight and adaptable to mobile devices.The void rate in the ASPP module was optimized to improve the network's ability to extract rust of different sizes.The CBAM attention mechanism was added to enhance the model's perception and capture of key features.A comparative experiment was conducted between the improved DeepLabV3+model and the original DeepLabV3+model,PSPNet model,and U-Net model.At the same time,ablation experiments were conducted.Finally,the improved model was mounted on a visual robot and field engineering tests were conducted.The results show that the improved DeepLabV3+model has an average accuracy improvement of 7.5%,an average intersection to intersection ratio improvement of 14.7%,and an average recall rate improvement of 9.1%,compared to other models in segmenting steel bridge rust images.
关 键 词:桥梁工程 DeepLabV3+ 钢桥锈蚀检测 卷积神经网络 图像分割
分 类 号:U446.3[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222