检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖添龙 徐计 王国胤[3] XIAO Tianlong;XU Ji;WANG Guoyin(State Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025,China;College of Computer Science and Technology,Guizhou University,Guiyang 550025,China;Chongqing Key Laboratory of Computational Intelligence,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
机构地区:[1]贵州大学省部共建公共大数据国家重点实验室,贵州贵阳550025 [2]贵州大学计算机科学与技术学院,贵州贵阳550025 [3]重庆邮电大学计算智能重庆市重点实验室,重庆400065
出 处:《智能系统学报》2025年第1期243-254,共12页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金项目(62366008,61966005,62221005).
摘 要:图池化作为图神经网络中重要的组件,在获取图的多粒度信息的过程中扮演了重要角色。而当前的图池化操作均以平等地位看待数据点,普遍未考虑利用邻域内数据之间的偏序关系,从而造成图结构信息破坏。针对此问题,本文提出一种基于偏序关系的多视图多粒度图表示学习框架(multi-view and multi-granularity graph representation learning based on partial order relationships,MVMGr-PO),它通过从节点特征视图、图结构视图以及全局视图对节点进行综合评分,进而基于节点之间的偏序关系进行下采样操作。相比于其他图表示学习方法,MVMGr-PO可以有效地提取多粒度图结构信息,从而可以更全面地表征图的内在结构和属性。此外,MVMGr-PO可以集成多种图神经网络架构,包括GCN(graph convolutional network)、GAT(graph attention network)以及GraphSAGE(graph sample and aggregate)等。通过在6个数据集上进行实验评估,与现有基线模型相比,MVMGr-PO在分类准确率上有明显提升。Graph pooling,as a crucial component of graph neural networks(GNNs),plays a vital role in capturing multigranularity information of graphs.However,current graph pooling operations typically treat data points equally,often neglecting the partial order relationships among data within neighborhoods,which leads to the disruption of graph structural information.To address this issue,we propose a novel framework for multi-view and multi-granularity graph representation learning based on partial order relationships,named MVMGr-PO.This framework comprehensively scores nodes from the perspectives of node feature view,graph structure view,and global view,and then performs downsampling operations based on the partial order relationships among nodes.Compared with other graph representation learning methods,MVMGr-PO effectively extracts multi-granularity graph structural information,thus providing a more comprehensive representation of the intrinsic structure and attributes of the graph.Additionally,MVMGr-PO can integrate various graph neural network(GNN)architectures,including graph convolutional network(GCN),graph attention network(GAT),and graph sample and aggregate(GraphSAGE).Experimental evaluations on six datasets demonstrate that compared with existing baseline models,MVMGr-PO significantly improves classification accuracy.
关 键 词:图神经网络 图池化 多粒度 偏序关系 节点分类任务 图表示学习 半监督学习 图嵌入
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49