考虑路面附着系数的自适应MPC轨迹跟踪算法  

Adaptive MPC trajectory tracking algorithm considering road adhesion coefficients

在线阅读下载全文

作  者:李文礼 李旭 LI Wenli;LI Xu(School of Vehicle Engineering,Chongqing University of Technology,Chongqing 400054,China)

机构地区:[1]重庆理工大学车辆工程学院,重庆400054

出  处:《重庆理工大学学报(自然科学)》2025年第2期19-26,共8页Journal of Chongqing University of Technology:Natural Science

基  金:重庆市教委科学技术研究项目(KJQN202201170)。

摘  要:为提高自动驾驶汽车轨迹跟踪精度与行驶稳定性,提出考虑路面附着系数的自适应MPC轨迹跟踪控制算法。建立三自由度车辆动力学模型和轨迹跟踪模型预测控制器,基于横向跟踪偏差和道路曲率自适应调整模型预测控制器的价值函数;基于递推最小二乘法实时估算路面附着系数,将估算结果作为轮胎侧偏角以及横向加速度约束相关的变量引入到控制器中,解决车辆在低附着路面下转向时轮胎侧向力易超出轮胎线性区间导致车辆失稳的问题。搭建CarSim与Matlab/Simulink联合仿真平台进行仿真实验。结果表明,在不同附着系数的路面环境下,该算法相较于传统MPC控制算法具有更高的跟踪精度和稳定性。To improve the trajectory tracking accuracy and driving stability of autonomous vehicles,we propose an adaptive MPC trajectory tracking control algorithm considering the road adhesion coefficient.First,a three-degree-of-freedom vehicle dynamics model and a trajectory tracking model prediction controller are built based on lateral tracking error and the value function of the model predictive controller of road curvature adaptive adjustment.Then,based on the recursive least squares method,the road adhesion coefficient is estimated in real time,and the estimation results are introduced into the controller as variables related to tire deflection angle and lateral acceleration constraints,addressing the vehicle instability caused by the lateral force of the tire easily going beyond its linear range on the low adhesion road.Finally,the CarSim and Matlab/Simulink co-simulation platforms are built for simulation experiments.Results show our proposed algorithm achieves higher tracking accuracy and stability than the traditional MPC control algorithm in the pavement environment with different adhesion coefficients.

关 键 词:轨迹跟踪 路面附着系数识别 模型预测控制 模糊控制 权重系数 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象