检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晶晶 王延昊 姜文君 曾一夫 祝团飞 Wang Jingjing;Wang Yanhao;Jiang Wenjun;Zeng Yifu;Zhu Tuanfei(College of Computer Science and Engineering,Changsha University,Changsha 410022;School of Data Science and Engineering,East China Normal University,Shanghai 200062;College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082)
机构地区:[1]长沙学院计算机科学与工程学院,长沙410022 [2]华东师范大学数据科学与工程学院,上海200062 [3]湖南大学信息科学与工程学院,长沙410082
出 处:《计算机研究与发展》2025年第3期709-719,共11页Journal of Computer Research and Development
基 金:国家重点研发计划项目(2022ZD0118302);国家自然科学基金项目(62202169,62006030,62302061,62302062,62172149,62172372,62372067);湖南省自然科学基金项目(2023JJ40080,2023JJ40081);湖南省教育厅科学研究项目(24B0789);长沙市自然科学基金项目(kq2502339)。
摘 要:图数据中包含丰富的时间信息,其拓扑结构随时间动态演变,通常建模为时序图流.时序图流由一组节点和一系列带时间戳的有向边组成,节点、时序边随时间动态增加.其中时序子图是由传统子图模式推广而来,不仅考虑拓扑结构,同时将时序边的顺序和持续时间纳入考量.在时序图流中计算时序子图的出现次数是时序图研究中的一个基础问题.然而,传统流式子图计数方法不支持时序匹配,仅适用于不包含时间信息的简单无向图或有向图;并且,现有时序子图计数算法在不断产生新数据的时序图流场景下效率不高.因此,对时序图流上时序子图近似计数问题进行了研究,提出了基于蓄水池采样的流式边采样(streaming edge sampling, SES)算法,并从期望、方差、时间复杂度3个方面对SES算法进行了理论分析.最后,在4个真实数据集上进行了大量实验.实验结果表明,与基线方法相比,SES虽然返回的计数相对误差略大,但计算效率取得了最高3个数量级的大幅提升.Graphs often have rich temporal information and evolve dynamically over time,which can be modeled as temporal graph streams.A temporal graph stream consists of a set of vertices and a series of timestamped and directed edges,where new vertices and edges arrive continuously over time.Temporal motifs are generalizations of subgraph patterns in static graphs which take into account edge orderings and durations in addition to topologies.Counting the number of occurrences of temporal motifs is a fundamental problem for temporal graph analysis.However,traditional streaming subgraph counting methods cannot support temporal matching,and are only suitable for simple graphs that do not contain temporal information.In addition,existing temporal motifs counting methods suffer from poor performance in temporal graph streams.We thus study approximate temporal motif counting via random sampling in temporal graph streams.We propose a generic streaming edge sampling(SES)algorithm to estimate the number of instances of any temporal motif in a given temporal graph stream.We then provide comprehensive analyses of the theoretical bounds and time complexities of SES.Finally,we perform extensive experimental evaluations for SES on four real world datasets.The results show that SES achieves up to three orders of magnitude speedups over the state-of-the-art sampling methods while having comparable estimation errors for temporal motif counting in the streaming setting.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.104.136