检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张博群 沈虹[1] ZHANG Boqun;SHEN Hong(School of Business,Yangzhou University,Yangzhou Jiangsu 225127,China)
出 处:《阜阳师范大学学报(自然科学版)》2024年第4期91-97,共7页Journal of Fuyang Normal University:Natural Science
基 金:国家自然科学基金资助项目(61803331,92371116);江苏省自然科学基金资助项目(BK20170515)。
摘 要:在资产池中选出具有高回报的优质资产,是投资组合模型的关键因素。文章采用长短期记忆网络这一深度学习算法对资产收益进行预估,提高了精准识别高质量资产的能力,并因此增进投资组合策略的表现;然后使用均值-方差模型对选出的优质资产进行投资比例划分;最后以中国大宗商品期货市场为资产池,进行100期投资,从收益率、风险和风险收益三个方面选取不同指标来评估投资组合的绩效,结果表明LSTM+MV投资组合在风险绩效上表现最优,且取得较好的收益。Identifying high-return, high-quality assets within an asset pool is a critical component of portfolio modeling.This study employs the Long Short-Term Memory(LSTM) network, a deep learning algorithm, to forecast asset returns, thereby enhancing the precision of high-quality asset identification and subsequently improving the overall performance of the portfolio strategy. Following asset selection, the Mean-Variance(MV) model is applied to allocate investment proportions among the identified high-quality assets. Using China's commodity futures market as the asset pool, a 100-period investment simulation is conducted. Portfolio performance is evaluated through various metrics encompassing return, risk, and risk-adjusted return. The results demonstrate that the LSTM+MV portfolio model achieves superior performance in risk management and yields favorable returns, showcasing optimal efficacy in risk-adjusted performance.
分 类 号:F7323.7[经济管理—产业经济] TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.116.193