检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐斌[1] 高天慧 王宏平 林颢[1] 程力[3] 陈中伟[1] XU Bin;GAO Tianhui;WANG Hongping;LIN Hao;CHENG Li;CHEN Zhongwei(School of Food and Biological Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu;China Grain Reserves Corporation Zhenjiang Grain and Oil Co.,Ltd,Zhenjiang 212006,Jiangsu;State Key Laboratory of Food Science and Resources,School of Food Science and Technology,Jiangnan University,Wuxi 214122,Jiangsu)
机构地区:[1]江苏大学食品与生物工程学院,江苏镇江212013 [2]中储粮镇江粮油有限公司,江苏镇江212006 [3]江南大学食品学院食品科学与资源挖掘全国重点实验室,江苏无锡214122
出 处:《中国食品学报》2025年第2期15-26,共12页Journal of Chinese Institute Of Food Science and Technology
基 金:国家自然科学基金项目(32472429);自治区区域协同创新专项(科技援疆计划)(2022E02094)。
摘 要:粮油加工作为食品工业的核心领域,其智能化转型亟需高效、精准的品质检测技术支撑。可见/近红外光谱技术凭借快速、无损、多指标同步检测的优势,已成为粮油加工过程品质监控的核心手段。本文系统梳理近红外光谱检测技术原理、智能装备研发及光谱数据处理方法的创新进展,即:硬件层面,便携式与在线监测装备突破小型化与抗干扰技术瓶颈,实现从实验室到工业场景的跨越;算法层面,光谱预处理、变量筛选与智能建模技术的融合,显著提升了检测精度与鲁棒性;应用层面,该技术已渗透至谷物加工链水分调控、油脂精炼氧化监测等关键环节,推动质控模式向数据驱动转型。然而,模型泛化能力不足、复杂工况适应性弱及标准化体系缺失仍是当前主要的技术瓶颈。未来需通过深度迁移学习、多源信息融合与边缘计算等技术优化“算法-设备-标准”协同创新体系,以实现粮油加工全链条实时质量调控与智能化升级。As a core sector of the food industry,grain and oil processing urgently requires efficient and precise quality detection technologies to drive its intelligent transformation.Visible/Near-infrared(Vis/NIR)spectroscopy,with its advantages of rapid,non-destructive,and multi-parameter synchronous detection,has emerged as a pivotal tool for quality monitoring in grain and oil processing.This paper systematically reviewed the latest advancements in NIR detection principles,intelligent equipment development,and spectral data processing methodologies.At the hardware level,breakthroughs in miniaturization and anti-interference technologies had enabled portable and online monitoring devices to transition from laboratory research to industrial applications.Algorithmically,the integration of spectral preprocessing,variable selection,and intelligent modeling had significantly enhanced detection accuracy and robustness.In practical applications,the technology had been deployed across critical stages such as moisture regulation in grain processing chains and oxidation monitoring during oil refining,driving a shift toward data-driven quality control.However,challenges persist,including limited model generalization,weak adaptability to complex industrial environments,and the absence of standardized systems.Future advancements demanded collaborative innovation in'algorithm-equipment-standard'systems through deep transfer learning,multi-source information fusion,and edge computing technologies to achieve real-time quality regulation and intelligent upgrades across the entire grain and oil processing chain.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222