检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜丽梅 陈信威 Jiang Limei;Chen Xinwei(Department of Computer Science,North China Electric Power University,Baoding 071003,China)
出 处:《系统仿真学报》2025年第3期753-762,共10页Journal of System Simulation
基 金:华北电力大学中央高校基本科研业务费专项资金(2022MS102)。
摘 要:针对传统的视觉SLAM算法在动态环境下定位精度与鲁棒性低的问题,提出了一种基于特征点筛选的改进动态SLAM算法。该算法以ORB-SLAM3算法为基本框架,增加了动态区域划分与特征点筛选模块。动态区域划分模块使用改进的RT-DETR目标检测算法检测图像中的动态物体并根据检测框划分动态区域,特征点筛选模块使用对极约束以及光流法筛选掉运动的动态物体身上的特征点,保留静止的动态物体上以及目标检测框内属于背景部分的特征点,参与后续的位姿优化。改进的算法尽可能的保留了更多的有效特征点参与相机位姿优化,实验结果表明:改进的算法在高动态环境下绝对轨迹误差的RMSE值,能够达到平均90%以上提升的同时保持实时运行。To address low positioning accuracy and robustness in traditional visual SLAM algorithms under dynamic conditions,this paper proposes an improved dynamic SLAM algorithm based on feature point selection.Built upon the ORB-SLAM3 framework,it incorporates dynamic region partitioning and feature point filtering.The dynamic region partitioning module utilizes an enhanced RT-DETR object detection algorithm to detect dynamic objects in the images and divides the dynamic regions based on the detection boxes.The feature point selection module utilizes epipolar constraints and optical flow methods to filter out feature points on moving objects,retaining stationary dynamic objects and background points within the detected object bounding boxes for subsequent pose optimization.The improved algorithm strives to retain as many effective feature points as possible for camera pose optimization.Experimental results show that the proposed algorithm improves the RMSE of absolute trajectory error in highly dynamic environments by over 90%on average,while maintaining real-time operation.
关 键 词:光流 对极约束 视觉SLAM 动态环境 RT-DETR PP-LCNet
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38