基于深度学习的汽车乘员腰椎损伤预测及影响因素分析  

Prediction of occupant lumbar spine injuries based on machine learning and analysis of influencing factors

在线阅读下载全文

作  者:李海岩[1,2] 张欣玉 可婷 王彦鑫 贺丽娟 吕文乐[1,2] 崔世海 阮世捷[1,2] LI Haiyan;ZHANG Xinyu;KE Ting;WANG Yanxin;HE Lijuan;LÜWenle;CUI Shihai;YUAN Shijie(College of Mechanical Engineering,Tianjin University of Science and Technology,Tianjin 300222,China;International Research Association on Emerging Automotive Safety Technology,Tianjin 300222,China;College of Artificial Intelligence,Tianjin University of Science and Technology,Tianjin 300457,China)

机构地区:[1]天津科技大学机械工程学院,天津300222 [2]现代汽车安全技术国际联合研究中心,天津300222 [3]天津科技大学人工智能学院,天津300457

出  处:《中国医学物理学杂志》2025年第3期388-396,共9页Chinese Journal of Medical Physics

基  金:国家重点研发计划(2018YFC0807203-1);国家自然科学基金(81471274,81371360)。

摘  要:基于CT影像数据,构建高生物逼真度的腰椎损伤仿生模型,并对标尸体实验数据验证模型的有效性。解耦汽车正面碰撞中乘员上躯干由于惯性作用向前俯冲后受约束系统作用回位时与座椅接触所受压迫的历程,设计跌落实验进行仿真分析。基于深度学习算法对仿真输出结果进行训练预测,并验证训练后所得神经网络预测模型的准确性。采用主成分分析和交叉逆向方法对关键参数进行相关性分析。结果表明:训练所得腰椎结构损伤预测模型具有较高可靠性(R^(2)>0.9)。综合分析发现,腰椎结构在受轴向冲击后L_(4)椎体承受最大冲击载荷,可将其作为腰椎损伤量化评价代表。各环境变量中,L_(4)腰椎轴向力主要受躯干质量及跌落高度影响,二者均对其具有正相关影响。躯干质量、后倾角度及跌落高度对内能影响均存在正向影响;而躯干质量及跌落高度对应力影响呈负相关性。该研究结果为进一步理清智能座舱环境中腰椎损伤机理以制订相应的安全防护策略及汽车乘员安全保护评价等提供科学的参考依据。Based on CT scan data,a bionic model of lumbar spine injuries with high biofidelity is developed and validated through cadaver experiments.Decoupling the constraint system that affects occupants during collisions due to inertial forces and the subsequent pressure exerted by the seat upon returning to position,a simulated fall experiment is designed.The simulated outcomes are trained and predicted using deep learning algorithms,and the accuracy of the trained neural network prediction model is verified.Key parameters are analyzed for correlation using principal component analysis and crossreverse methods.The results shows that the predicted lumbar spine injury model obtained from training has high reliability(R^(2)>0.9).Comprehensive analysis reveals that after experiencing axial impact,the L_(4) vertebral body bears the highest impact load and can be used as a representative measure of lumbar spine injury.Among the environmental variables,the axial force on the L_(4) lumbar spine is mainly affected by torso mass and fall height,both of which have positive correlations.Torso mass,fall height,and posture angle all have positive effects on internal energy.Conversely,torso mass and fall height have negative correlations with stress.These research findings provide a scientific basis for further elucidating lumbar spine injury mechanisms in intelligent cockpit environments,devising corresponding safety protection measures,and evaluating occupant safety in automobiles.

关 键 词:腰椎损伤仿生模型 损伤机理 机器学习 主成分分析 神经网络 

分 类 号:R318.01[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象