检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张娜 朱燕 王晓青 王双美[1,2] 张谷春 ZHANG Na;ZHU Yan;WANG Xiaoqing;WANG Shuangmei;ZHANG Guchun(Jiangsu Mineral Resources and Geological Design and Research Institute,Xuzhou 221006,Jiangsu,China;Key Laboratory of Coal Resources and Mineral Resources,China National Administration of Coal Geology,Xuzhou 221006,Jiangsu,China;School of Earth and Planetary Sciences,Chengdu University of Technology,Chengdu 610059,Sichuan,China)
机构地区:[1]江苏地质矿产设计研究院,江苏徐州221006 [2]中国煤炭地质总局煤系矿产资源重点实验室,江苏徐州221006 [3]成都理工大学地球与行星科学学院,四川成都610059
出 处:《能源与节能》2025年第3期80-84,共5页Energy and Energy Conservation
基 金:江苏省碳达峰碳中和科技创新专项(BM2022037);江苏省碳达峰碳中和科技创新专项(BE2023855)。
摘 要:在推动绿色发展的过程中,摸清区域CO_(2)排放量及减排潜力对优化和指导CO_(2)减排路径至关重要。通过收集29年的江苏统计年鉴数据,运用碳排放因子法计算了江苏省规模以上工业企业能源消费CO_(2)排放量。结果发现江苏省1995—2023年规模以上工业企业能源消费CO_(2)排放量为1.565993×10^(8)~7.839427×10^(8)t,平均值为4.850309×10^(8)t,年增长率为-3.85%~23.68%,平均值为6.12%。江苏省规模以上工业企业能源消费CO_(2)排放量的预测值与实际值的独立样本t检验结果表明,运用BP神经网络模型预测江苏省规模以上工业企业能源消费CO_(2)排放量是可行的。预测结果表明,到2030年,江苏省规模以上工业企业能源消费CO_(2)排放量在中速发展模式下为7.499816×10^(8)t,在低速发展模式下为7.215752×10^(8)t。提出了通过调整能源消费结构、加快产业结构转型升级、合理利用土地和建立碳交易市场推动江苏省低碳发展。In promoting green development,it is crucial to understand the regional CO_(2)emissions and emission reduction potential in order to optimize and guide the CO_(2)emission reduction path.By collecting the data of Jiangsu statistical yearbook of the 29 years and using the carbon emission factor method,the CO_(2)emissions from energy consumption of industrial enterprises above designated size in Jiangsu Province were calculated.The results showed that from 1995 to 2023,the CO_(2)emissions from energy consumption of enterprises above designated size in Jiangsu Province were 1.565993×10^(8)-7.839427×10^(8)t,with an average of 4.850309×10^(8)t,an annual growth rate of-3.85%-23.68%,and an average of 6.12%.The independent sample t-test results of the predicted and actual CO_(2)emissions from energy consumption of industrial enterprises above designated size in Jiangsu Province indicate that using the BP neural network model to predict CO_(2)emissions from energy consumption of industrial enterprises above designated size is feasible.The prediction results show that by 2030,the CO_(2)emissions from energy consumption of industrial enterprises above designated size in Jiangsu Province will be 7.499816×10^(8)t under the medium-speed development mode and 7.215752×10^(8)t under the low-speed development mode.The strategy of promoting low-carbon development in Jiangsu Province by adjusting the energy consumption structure,accelerating the transforming and upgrading the industrial structure,reasonably utilizing land and establishing a carbon trading market was proposed.
关 键 词:工业企业 江苏省 CO_(2)排放量 BP神经网络模型 碳排放因子法
分 类 号:X24[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13