检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张忠民[1] 姜嵛涵 ZHANG Zhongmin;JIANG Yuhan(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
机构地区:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
出 处:《应用科技》2025年第1期166-172,共7页Applied Science and Technology
摘 要:在雷达辐射源信号识别中,针对现有的识别方法存在实时性差、网络模型参数量大以及难以应用于资源受限的设备等问题,提出了一种基于轻量级卷积神经网络的雷达辐射源信号识别方法。首先,利用平滑伪Wigner-Ville分布(smooth pseudo Wigner-Ville distribution,SPWVD)将雷达辐射源信号转换为时频图像,并对时频图像进行图像预处理;其次,基于Vision Transformer的架构设计,结合传统的卷积神经网络,构建了轻量级网络模型RecNet;最后,利用预处理后的时频图像对RecNet网络模型进行训练,实现对9种雷达辐射源信号的高效识别。实验表明,该方法在信噪比为−8 dB时,对9种雷达辐射源信号的识别准确率达到95.7%,模型参数量为0.9×10^(6)且推理延迟仅为4.67 ms,在保证较高识别准确率的同时,具有更快的识别速度和更小的模型参数量,具有一定的工程应用价值。In the recognition of radar radiation source signals,the existing recognition methods have problems such as poor real-time performance,large number of network model parameters,and difficulty in applying to resource-constrained devices.This paper proposes a radar radiation source signal recognition method based on a lightweight convolutional neural network—Recognition Network(RecNet).First,the radar radiation source signal is converted into a time-frequency image using a smooth pseudo Wigner-Ville distribution(SPWVD),and the time-frequency image is preprocessed.Secondly,based on the architecture design of Vision Transformer,and combined with the traditional convolutional neural network,a lightweight network model RecNet is constructed.Finally,the preprocessed time-frequency image is used to train the RecNet network model,achieving high-efficiency recognition of radar radiation source signals.Experiments show that when the signal-to-noise ratio is−8 dB,the recognition accuracy of 9 types of radar radiation source signals reaches 95.7%,the model parameter volume is 0.9 MB,and the inference delay is only 4.67 ms.While ensuring a high recognition accuracy,this method has a faster recognition speed and a smaller model parameter volume,and has certain engineering application value.
关 键 词:轻量级 卷积神经网络 雷达辐射源识别 时频分析 图像处理 Vision Transformer 高效识别 深度学习
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.94.230