变电站巡检机器人多场景巡视点检路线优化研究  

Optimization Study of Multi-Scenario Inspection Routes for Substation Inspection Robots

在线阅读下载全文

作  者:宁雪峰 NING Xuefeng(Dongguan Power Supply Bureau,Guangdong Power Grid Co.,Ltd.,Dongguan 523000,China)

机构地区:[1]广东电网有限责任公司东莞供电局,广东东莞523000

出  处:《自动化仪表》2025年第3期106-110,共5页Process Automation Instrumentation

基  金:南方电网公司科技基金资助项目(031900KK52220003)。

摘  要:巡检机器人在执行巡检任务时容易受到周围环境的影响,导致路线规划效果差、效率低。为此,对变电站巡检机器人多场景巡视点检路线优化方法进行了研究。分析变电站巡检机器人系统结构。针对巡检机器人在巡检期间可能存在路网限制及耗能大的问题,考虑点检路线优化及最佳测温停靠点的相互约束性。在此基础上,进一步构建了变电站巡检机器人多场景巡视点检路线规划模型,完成巡视点检路线规划。根据建立的规划模型,采用蚁群算法对模型实施优化求解,从中获取最佳路线,实现变电站巡检机器人多场景巡视点检路线优化。试验结果表明,所提方法的时间开销始终在121 ms以下、规划路线最短,具有良好的路径规划效果。该研究可以提高变电站的安全性和稳定性,对电力工程领域的发展具有重要意义。Inspection robots are easily affected by the surrounding environment when performing inspection tasks,resulting in poor route planning and low efficiency.For this reason,the substation inspection robots multi-scenario inspection routes optimization method is studied.The substation inspection robot system structure is analyzed.Aiming at the inspection robots possible problems of road network limitations and high energy consumption during inspection,the mutual constraints of inspection route optimization and the best temperature measurement stopping point are considered.On this basis,a multi-scenario inspection route planning model for substation inspection robot is further constructed to complete the inspection route planning.According to the established planning model,the ant colony algorithm is used to optimize and solve the model,from which the best route is obtained to realize the optimization of multi-scene inspection routes of substation inspection robots.The experimental results show that the proposed method always has a time overhead of less than 121 ms and the shortest planning route,which has a good path planning effect.This study can improve the safety and stability of substations,which is of great significance to the development of power engineering field.

关 键 词:变电站 巡检机器人 多场景巡视点检路线 路线规划模型 蚁群算法 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象