检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵绪凤 赵志诚[1,2] 聂晓音 张宇 SHAO Xufeng;ZHAO Zhicheng;NIE Xiaoyin;ZHANG Yu(School of Electronic Information Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;Shanxi Provincial Key Laboratory of Advanced Control and Equipment Intelligence,Taiyuan 030024,China)
机构地区:[1]太原科技大学电子信息工程学院,山西太原030024 [2]先进控制与装备智能化山西省重点实验室,山西太原030024
出 处:《计算机集成制造系统》2025年第3期877-887,共11页Computer Integrated Manufacturing Systems
基 金:山西省科技成果转化引导专项资助项目(202204021301059);山西省基础研究计划(自由探索类)面上资助项目(202203021221142);山西省研究生科研创新资助项目(2023KY650)。
摘 要:刀具异常检测是分析和判断刀具健康状态的基础和关键。针对刀具在异常检测过程中,振动信号状态信息难以辨别、时空特征提取不同步以及潜在空间中潜在变量的分布考虑尚不充分,导致模型检测精度低的问题,提出一种基于时空特征提取的刀具无监督异常检测方法。首先,对各轴向振动信号采用独立式预处理方法,将其映射到同一范围,消除信号波动范围不一致带来的影响。然后,将时间卷积网络(TCN)嵌入变分自编码器(VAE)中,实现数据时空特征的同步提取,提高模型的学习能力;同时,通过非线性映射将原始数据映射到潜在空间,从而学习到各轴向输入的潜在变量,并使其尽可能对齐高斯分布。最后,利用公开刀具磨损数据集PHM 2010验证了所提方法的有效性,结果表明,所提方法具有较高的检测精度,且性能优于其他异常检测方法。Tool anomaly detection is the foundation and key to analyzing and judging tool health status.Aiming at the problem of low model detection accuracy caused by difficulty in distinguishing vibration signal status information,asynchronous spatiotemporal feature extraction,and insufficient consideration of the potential variables distribution in the latent space during tool anomaly detection,a method for unsupervised tool anomaly detection based on spatiotemporal feature extraction was proposed.An independent preprocessing method was adopted for each axial vibration signal to map them to the same range,which eliminated the impact of inconsistent signal fluctuation range.Then,the Temporal Convolutional Network(TCN)was embedded into Variational Autoencoder(VAE)to achieve synchronous extraction of spatiotemporal features and improve the learning ability of the model.In addition,the raw data was mapped to the latent space through nonlinear mapping,thereby learning the latent variables under each axial input and aligning them as closely as possible with the Gaussian distribution.Based on the publicly available tool wear dataset PHM 2010,the effectiveness of the proposed method was verified,and the results showed that the proposed method had high detection accuracy and better than other anomaly detection methods.
关 键 词:刀具 异常检测 变分自码器 时间卷积网络 无监督学习
分 类 号:TG71[金属学及工艺—刀具与模具] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222