检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马天兵[1,2,3] 杨婷 李长鹏 杜菲[1,3] 史瑞 于平平[1] MA Tian-bing;YANG Ting;LI Chang-peng;DU Fei;SHI Rui;YU Ping-ping(State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal,Anhui University of Science and Technology,Huainan 232001,China;Institute of Energy,Hefei Comprehensive National Science Center(Anhui Energy Laboratory),Hefei 230051,China;School of Mechanical Engineering,Anhui University of Science and Technology,Huainan 232001,China)
机构地区:[1]安徽理工大学深部煤矿采动响应与灾害防控国家重点实验室,淮南232001 [2]合肥综合性国家科学中心能源研究所,合肥230051 [3]安徽理工大学机电工程学院,淮南232001
出 处:《科学技术与工程》2025年第9期3629-3636,共8页Science Technology and Engineering
基 金:安徽高校协同创新项目(GXXT-2022-019);安徽省重点研究与开发计划(202104a07020005);安徽省自然科学基金面上项目(2008085ME178);国家重点实验室资助项目(SKLMRDPC20ZZ01);深部煤矿采动响应与灾害防控国家重点实验室开放基金(SKLMRDPC22KF26);安徽省智能矿山技术与装备工程实验室开放基金(AIMTEEL202202);安徽理工大学引进人才科研启动基金(2022YJRC63)。
摘 要:针对掘进机截割振动信号故障特征不易提取和识别困难等问题,提出了一种精细复合多尺度模糊散布熵(refined composite multiscale fuzzy dispersion entropy,RCMFDE)与河马优化随机森林(hippo optimized random forest,HORF)的掘进机截割头故障诊断新方法。首先,利用RCMFDE全面表征掘进机截割头故障特征信息,构建故障特征数据集;其次,采用HORF对故障类型进行训练和测试,实现掘进机截割头的故障模式识别;最后,将所提方法运用在掘进机截割头实验数据分析中,并将其与现有的多尺度模糊熵、精细复合多尺度散布熵故障特征提取方法做比较。实验结果显示:RCMFDE在挖掘故障特征信息方面优于其他两种熵方法,而河马随机森林在故障分类方面优于极限学习机和支持向量机等分类器,所提故障识别模型可以更加精确地识别掘进机截割头的故障类型,且识别准确率达到100%。To address the challenges of extracting and identifying fault features from roadheader cutting vibration signal,a new fault diagnosis method of roadheader cutting head based on the refine composite multi-scale fuzzy dispersion entropy(RCMFDE)and hippo optimized random forest(HORF)was proposed.Firstly,RCMFDE was used to comprehensively characterize the fault feature information of the roadheader cutting head,and the fault feature data set was constructed.Secondly,the fault type was trained and tested by the HORF to realize the fault pattern recognition of the cutting head of the roadheader.Finally,the proposed method was applied to the experimental data analysis of the cutting head of the roadheader,and compared with the existing multi-scale fuzzy entropy and fine-complex multi-scale spread entropy fault feature extraction methods.The results of the trial indicate that RCMFDE performs better than the other two entropy approaches in discovering defect features,and hippo random forest outperforms extreme learning machine and support vector machine in error recognition.The fault diagnosis method can more correctly recognize the error type of the cutting head of the roadheader,and the rate of accuracy of the recognition obtained 100%.
关 键 词:掘进机 截割振动信号 特征提取 故障诊断 精细复合多尺度模糊散布熵
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.80.77