面向气象无人艇的实时海面场景分类方法  

Real-time sea scene classification method for meteorological unmanned surface vehicles

在线阅读下载全文

作  者:苏睿涵 胡剑秋 蔡庆 邓强 刘盼盼 SU Ruihan;HU Jianqiu;CAI Qing;DENG Qiang;LIU Panpan(Jiangsu Automation Research Institute,High Technology Department,Lianyungang 222061,China;CSSC Beijing Intelligent Equipment Technology Co.,Ltd.,Beijing 102600,China)

机构地区:[1]江苏自动化研究所高新技术部,江苏连云港222061 [2]中船(北京)智能装备科技有限公司,北京102600

出  处:《舰船科学技术》2025年第6期88-93,共6页Ship Science and Technology

基  金:国家重点研发计划重点专项(2021YFC3090200)。

摘  要:在海面气象观测任务中,面对复杂多样的海面场景,无人艇执行任务过程中需要准确识别、分类海面场景,基于识别分类结果实时改变感知决策策略,以保证航行安全和高效作业。本文提出MSSNet场景分类模型,创新性地将MobileNeXt模块与MobileVit模块融合,并引入CA注意力模块高效提取全局语义信息,提高模型识别性能。本文基于艇载多种图像传感器构建无人艇海面场景分类图像数据集,包括雾天、强光、弱光、水渍、盐渍、夜间和正常等7类场景。经试验测试,本文提出的MSSNet模型在海面场景分类图像数据集上的准确率为96.60%,比MobileNetv3、ViT等主流模型提高了3.53%,满足气象观测任务中无人艇自主航行的需求。In sea surface meteorological observation tasks,faced with complex and diverse sea surface scenarios,unmanned aerial vehicles(UAVs)need to accurately identify and classify sea surface scenes during the execution process.Based on the recognition and classification results,the perception decision strategy needs to be changed in real time to ensure navigation safety and efficient operation.In response to the problem of sea surface scene recognition,this paper proposes the MSSNet scene classification model,which innovatively integrates the MobileNeXt module with the MobileVit module,and introduces the CA attention module to efficiently extract global semantic information,improving the recognition performance of the model.This article constructs a dataset of unmanned boat sea surface scene classification images based on various onboard image sensors,including seven categories of scenes:foggy,strong light,weak light,waterlogged,saline,nighttime,and normal.After experimental testing,the accuracy of the MSSNet model proposed in this article on the sea scene classification image dataset is 96.60%,which is 3.53%higher than mainstream models such as MobileNetv3 and ViT,and meets the needs of autonomous navigation of unmanned boats in meteorological observation tasks.

关 键 词:海面气象观测 无人艇 海面场景分类 神经网络 注意力机制 

分 类 号:U661[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象