检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周意 毛宽民[1] ZHOU Yi;MAO Kuanmin(School of Mechanical Science&Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
机构地区:[1]华中科技大学机械科学与工程学院,武汉430074
出 处:《计算机科学》2025年第4期194-201,共8页Computer Science
基 金:宁夏回族自治区重点研发计划(2020BBF02016,2021BFH02001)。
摘 要:非接触式牛只个体识别方法在节约识别成本、简化识别流程和提升识别精度方面具有一定的优势,近年来在牛只个体识别领域有了充分的发展。但现有的研究中存在着识别准确率受环境和天气等外部因素影响过大、模型迁移训练困难等问题。针对上述问题,基于YOLO-Unet组合网络提出了包含3个模块的牛只个体识别模型。首先,根据YOLOv5模型构建图像提取模块,用以提取牛只面部图像;随后,采用Unet模型构建背景消去模块,用以去除牛只面部图像背景,以消除环境影响,进而提升模型泛化性能;最后,使用MobileNetV3构建个体分类模块,对经背景消去后的牛只面部图像进行分类。对背景消去模块进行了消融实验,实验结果表明,引入背景消去模块能极大地提升模型泛化性能。引入背景消去模块的模型在测试集上的识别准确率为90.48%,相较于未引入背景消去模块的模型提升了11.99%。Non-contact method for cattle individual identification has advantages in cost reduction of identification,simplification of identification process and accurate identification,which has been fully developed in cattle individual identification in recent years.There are some problems in existing research,such as recognition accuracy affected by external factors(environment,weather,etc.)too much and difficult transfer learning.In view of the above problems,a cattle individual identification model with 3 modules based on YOLO-Unet combined network is proposed.Firstly,the image extraction module is constructed by YOLOv5 model to extract cattle facial images.Then,the background removal module is constructed by Unet model to remove the background of cattle facial images for eliminating the environmental impact,so as to improve the model’s generalization ability.Finally,the individual classification module is constructed by MobileNetV3 model to classify the cattle facial images whose background removed.Ablation experiment is performed on the background elimination module.The experimental result shows that the background removal module can greatly improve the model’s generalization ability.The recognition accuracy of the model with background removal module is 90.48%,which is 11.99%higher than that of the model without background removal module.
关 键 词:牛只个体识别 深度学习 目标检测 语义分割 目标识别 泛化能力
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33