检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于城 戴亚康[2] 刘燕[1,2] YU Cheng;DAI Yakang;LIU Yan(School of Intelligence and Information Engineering,Shandong University of Traditional Chinese Medicine,Jinan 250355;Suzhou Institute of Biomedical Engineering and Technology,Chinese Academy of Sciences,Suzhou,Jiangsu Province 215163)
机构地区:[1]山东中医药大学智能与信息工程学院,济南250355 [2]中国科学院苏州生物医学工程技术研究所,江苏苏州215163
出 处:《北京生物医学工程》2025年第2期198-204,共7页Beijing Biomedical Engineering
基 金:国家自然科学基金(62271481);江苏省重点研发计划(BE2021012-5);科技创新2030—“脑科学与类脑研究”重大项目(2022ZD0208500);苏州市基础研究试点项目(SJC2022012)资助。
摘 要:运动想象脑机接口(motor imagery-based brain-computer interface,MI-BCI)技术通过解析患者大脑中与运动相关的神经信号,将其转换为外部设备的控制命令,使得大脑认知功能正常但上肢运动受限的患者能够通过主动意识直接参与康复训练。这种训练不仅能够在一定程度上实现神经通路的功能性代偿,还能激发大脑的可塑性,进而促进上肢功能的恢复。近年来,MI-BCI已成为神经康复领域的一项重要技术,特别是在脑卒中后上肢功能恢复中表现出独特的应用潜力。但当前研究仍存在不足,特别是在技术的精准性、患者适应性以及实际临床应用的广泛性方面还有待提高。为此本文首先介绍了脑电采集方式,指出目前非侵入式脑机接口更适应于上肢康复的临床研究。然后,对不同MI-BCI范式、解码方法和临床康复应用的近期研究进展进行了总结归纳并分析其优缺点。这些技术的融合使得MI-BCI系统不仅能够更精确地识别和响应患者的运动意图,还能通过提供丰富的感觉反馈,提升治疗的互动性和效果。最后,本文对MI-BCI未来发展的方向进行了展望,以期推动MI-BCI在上肢康复中的进一步发展。Motor imagery-based brain-computer interface(MI-BCI)technology decodes neural signals associated with motor intentions from the patient's brain and translates them into control commands for external devices.This enables patients with intact cognitive functions but impaired upper limb mobility to engage actively in rehabilitation training through their volitional control.Such training not only facilitates compensatory functional adaptations in neural pathways but also stimulates neural plasticity,subsequently enhancing upper limb recovery.In recent years,MI-BCI has emerged as a pivotal technology in the field of neurological rehabilitation,particularly in the recovery of upper limb function post-stroke,although current research exhibits limitations in terms of precision,adaptability for patients,and widespread clinical application.Accordingly,this article first discusses the methods of EEG collection,highlighting that non-invasive BCI is particularly suited for clinical studies focused on upper limb rehabilitation.Subsequently,it reviews and synthesizes recent advancements in various MI-BCI paradigms,decoding techniques,and clinical applications,critically evaluating their strengths and weaknesses.The integration of these technologies enables MI-BCI systems to more accurately identify and respond to patients'motor intentions,and provide rich sensory feedback to enhance the interactivity and effectiveness of treatment.Finally,the article speculates on future directions for MI-BCI development,aiming to propel further advancements of MI-BCI in upper limb rehabilitation.
分 类 号:R318.04[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38