检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晨雪 肖祥慧 顾阳 ZHANG Chenxue;XIAO Xianghui;GU Yang(School of Mechanical and Electrical Engineering,Beijing Institution of Graphic Communication,Beijing 102600,China)
出 处:《北京印刷学院学报》2025年第3期49-55,共7页Journal of Beijing Institute of Graphic Communication
摘 要:随着信息技术的迅速发展,数据总量呈指数级增长,涵盖了传感器网络、社交媒体、商业交易等多种来源。然而,噪声、缺失值、不一致性和冗余数据等问题对大数据分析的准确性构成了挑战。在此背景下,数据清洗成为提升数据质量的关键环节之一。本文阐述数据清洗的步骤和方法,针对脏数据的不同类型提出相应的数据清洗方法,并对数据清洗领域未来的发展方向与研究重点进行展望。With the rapid development of information technology,the total volume of data has grown exponentially,encompassing various sources such as sensor networks,social media,and business transactions.However,challenges to the accuracy of big data analysis arise from issues such as noise,missing values,inconsistencies,and redundant data.In this context,data cleaning has become a critical step in improving data quality.This paper outlines the steps and methods of data cleaning,and presents corresponding data cleaning approaches for different types of dirty data.It offers a prospect for future research directions and key areas of focus in the field of data cleaning.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117