检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘健 汪颖 Liu Jian;Wang Ying(China Railway Lanzhou Group Co.,Ltd.,Lanzhou,China)
出 处:《科学技术创新》2025年第9期65-68,共4页Scientific and Technological Innovation
摘 要:本文提出了一种名为VSFNet的多变量时间序列预测模型,用于提高铁路客流量预测的准确性。VSFNet结合特征选择和深度学习,将变量分为高相关性和低相关性两类。高相关性变量通过Transformer提取特征,低相关性变量经PCA降维后,用BiLSTM结合Attention机制提取特征。这些特征在多层结构中融合,并通过跳连接和残差连接增强信息传递。实验结果显示,VSFNet在MSE、MAE和MAPE等指标上优于传统和现代模型,显示出在复杂时序数据处理上的优势。Accurately This paper introduces a model named VSFNet for multivariate time series prediction to enhance the accuracy of railway passenger flow forecasts.VSFNet combines feature selection and deep learning,categorizing variables into high and low correlation groups.High-correlation variables use Transformer for feature extraction,while low-correlation ones are reduced via PCA and processed with BiLSTM and an Attention mechanism.These features are integrated through a multi-layer structure with skip connections and residual links to improve information flow.Experimental results show that VSFNet outperforms traditional and modern models,demonstrating its advantage in handling complex time-series data.
分 类 号:U293[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63