基于比值的改进CA-CFAR算法及其在毫米波雷达目标检测中的应用  

Modified CA-CFAR Algorithm Based on Ratio and Its Application in Millimeter Wave Radar Target Detection

在线阅读下载全文

作  者:吕瑞广 周建江[1] 徐哲[1] 彭翌玲 LV Ruiguang;ZHOU Jianjiang;XU Zhe;PENG Yiling(Key Laboratory of Radar Imaging and Microwave Photonics,Ministry of Education,Nanjing University of Aeronautics and Astronautics,Nanjing Jiangsu 210016,China)

机构地区:[1]南京航空航天大学雷达成像与微波光子技术教育部重点实验室,江苏南京210016

出  处:《现代雷达》2025年第3期80-87,共8页Modern Radar

摘  要:针对单元平均恒虚警(CA-CFAR)算法在多目标环境下容易造成目标遮蔽等问题,本文提出了一种基于比值的改进CA-CFAR(RCA-CFAR)算法,在此基础上,对RCA-CFAR算法最多可容忍的干扰目标数进行理论推导,得出其最多可容忍的干扰目标数与参考单元之间的关系,并对最多可容忍的干扰目标数进行证明。此外,结合CA-CFAR算法将RCA-CFAR扩展为2D RCA-CFAR算法,通过分阶段处理,在距离维使用RCA-CFAR算法进行预检测,在多普勒维使用CA-CFAR算法进行目标检测,该算法既降低了邻近多目标区域的检测门限,又提高了检测效率。仿真和实验结果证明了所提算法的有效性、实用性和优越性。Considering the issues arising from the cell averaging constant false alarm rate(CA-CFAR)algorithms,such as target masking in multi-target scenarios,a modified CA-CFAR algorithm based on ratio(RCA-CFAR)is proposed.On this basis,the maximum number of tolerable interference targets for the RCA-CFAR algorithm is theoretically derived,and the relationship between the maximum tolerable interference targets and the number of reference cells is established and proven.Furthermore,the RCA-CFAR algorithm is extended to the 2D RCA-CFAR algorithm by integrating it with the CA-CFAR algorithm.Through a staged processing approach,the RCA-CFAR algorithm is applied for pre-detection in the range dimension,while the CA-CFAR algorithm is utilized for target detection in the Doppler dimension.By this method,the detection threshold in regions with neighboring multi-targets is reduced,and detection efficiency is improved.The effectiveness,practicality,and superiority of the proposed algorithm are validated through simulation and experimental results.

关 键 词:毫米波雷达 多目标检测 单元平均恒虚警 目标遮蔽 检测门限 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象