检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐昆杰 张治荣 向露露 程海兵 童建军[2,3] 叶沛 苗兴旺 XU Kunjie;ZHANG Zhirong;XIANG LulU;CHENG Haibing;TONG Jianjun;YE Pei;MIAO Xingwang(Beijing-Kunming High-Speed Railway Xikun Co.,Ltd.,Chongqing 400023,China;Key Laboratory of Transportation Tunnel Engineering,the Ministry of Education,Southwest Jiaotong University,Chengdu 610031,Sichuan,China;School of Civil Engineering,Southwest Jiaotong University,Chengdu610031,Sichuan,China)
机构地区:[1]京昆高速铁路西昆有限公司,重庆400023 [2]西南交通大学交通隧道工程教育部重点实验室,四川成都610031 [3]西南交通大学土木工程学院,四川成都610031
出 处:《隧道建设(中英文)》2025年第3期579-586,共8页Tunnel Construction
基 金:中国国家铁路集团有限公司科技研究开发计划重大课题(P2022G055)。
摘 要:为综合利用隧道勘察及施工阶段的地质信息,提升掌子面围岩级别判识的准确性,提出一种基于钻进参数与超前地质预报地震波反射法(TSP)融合的围岩级别智能判识方法。首先,从施工现场收集钻进参数、TSP报告及掌子面地质素描,读取相应的数据与围岩级别信息。其次,为明确钻进参数与地震波反射法的融合方式,设置5种融合工况,并选择4种机器学习分类算法(K近邻、梯度提升树、随机森林、极限树)验证融合数据的可分性。考虑到数据划分方式对模型的拟合能力有影响,通过设置随机数种子对数据集进行500种划分,以使各模型充分拟合。研究结果表明:采用钻进参数中的进给速度、推进压力、打击压力及回转压力与TSP中纵波速度、横波速度进行融合的工况下,模型分类效果最好,最大准确率为91.3%(采用极限树模型)。最后,使用贝叶斯优化算法对极限树模型的超参数进行优化,通过对比分析,经过优化后的模型在各个围岩级别上的分类性能均有所提升,且总体准确率为93.27%,提升了1.93%。An intelligent surrounding rock grade identification method based on the fusion of drilling parameters and tunnel seismic prediction(TSP)method is proposed to improve the identification accuracy of surrounding rock grade based on geological information in tunnel survey and construction stages.Drilling parameters,TSP reports,and geological sketches are collected from the construction site to interpret corresponding data and surrounding rock information.Then,five fusion scenarios are set and four machine leaning classification algorithms,i.e.,K-nearest neighbor,gradient boosting tree,random forest,and extreme tree,are employed to verify the separability of fused data for determining the final fusion mode of the drilling parameters and TSP data.To determine the impact of various data partitioning methods on the fitting ability of models,500 partitioning modes are applied to the dataset by setting random number seeds to fully fit each model.Results show that the extreme tree model yields the best surrounding rock grade classification effect with a maximum accuracy of 91.3%by fusing drilling parameters such as feed rate,thrust pressure,impact pressure,and rotation pressure with the longitudinal and transverse wave velocities in TSP,respectively.Finally,the Bayesian optimization algorithm is used to optimize the hyperparameters of the extreme tree model.The optimized model exhibits improved classification performance for various rock grades,with overall and increase accuracies of 93.27%and 1.93%,respectively.
关 键 词:隧道 围岩分级 钻进参数 地震波反射法 机器学习 贝叶斯优化算法
分 类 号:U45[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120