检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:易炟 陈东方[1,2] 王晓峰 YI Da;CHEN Dong-fang;WANG Xiao-feng(School of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065,China;Hubei Provincial Key Laboratory of Intelligent Information Processing and Real-time Industrial Systems,Wuhan 430065,China)
机构地区:[1]武汉科技大学计算机科学与技术学院,湖北武汉430065 [2]智能信息处理与实时工业系统湖北省重点实验室,湖北武汉430065
出 处:《计算机技术与发展》2025年第4期29-36,共8页Computer Technology and Development
基 金:湖北省教育科学研究计划重点项目(D20211106)。
摘 要:在当前基于元学习的小样本目标检测方法中,查询图像和支持图像的特征提取过程往往在进行最终特征融合之前是独立进行的,缺乏有效的信息交互,这导致查询特征的代表性信息不足,尤其在样本极度有限的情况下更为显著。为解决这一问题,提出了一种基于特征耦合注意力机制的小样本目标检测方法(FC-FSOD)。FC-FSOD以Faster-RCNN作为基础网络架构,并在此基础上进行了创新。首先,设计了特征增强耦合模块,该模块增强了支持特征,使其成为更具代表性的支持原型;其次,通过注意力机制将原型与查询特征进行耦合,赋予查询特征以特定于支持特征的感知信息;再次,综合考虑查询图像的ROI特征与类级原型之间的差异性和相似性,设计了一种更为鲁棒的特征融合策略;最后,对分类和回归任务进行了解耦处理,消除了全局平均池化对回归预测的负面影响。在PASCAL VOC和MS COCO这两个公开数据集上的实验结果表明,该方法在多种小样本场景中的检测精度均有明显提升。In the current meta-learning-based few-shot object detection methods,the feature extraction processes of query image and support images are often performed independently before the final feature fusion,and there is a lack of effective information interaction,which leads to insufficient representative information of the query features,and it is more significant especially in the case of extremely limited samples.To solve this problem,a few-shot object detection method based on the feature coupling attention mechanism(FC-FSOD)is proposed.FC-FSOD takes Faster-RCNN as the basic network architecture and makes innovations based on it.Firstly,a feature enhanced coupling module is designed,which enhances the support features to become more representative support prototypes.Secondly,the prototype is coupled with the query feature through the attention mechanism,and the query feature is endowed with the perceptual information specific to the supporting feature.Thirdly,a more robust feature fusion strategy is designed by considering the differences and similarities between the ROI features of the query image and the class-level prototypes.Finally,decoupling of the classification and regression tasks removes the negative influence of global average pooling on regression prediction.Experimental results on two publicly available datasets,PASCAL VOC and MS COCO,show a significant improvement in the detection accuracy of the proposed method in a variety of few-shot scenarios.
关 键 词:小样本学习 目标检测 元学习 特征耦合 特征融合 任务解耦
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33