多机电力网络系统振荡中心的存在机理及识别方法  

Existence Mechanism of Oscillation Centers in Multi-machine Power System and Corresponding Identification Method

在线阅读下载全文

作  者:李京 李振垚 甘德强[1] 倪秋龙 周靖皓 曹建伟 LI Jing;LI Zhenyao;GAN Deqiang;NI Qiulong;ZHOU Jinghao;CAO Jianwei(School of Electrical Engineering,Zhejiang University,Hangzhou 310027,China;State Grid Zhejiang Electric Power Co.,Ltd,Hangzhou 310007,China;Huzhou Power Supply Company,State Grid Zhejiang Electric Power Co.,Ltd,Huzhou 313000,China)

机构地区:[1]浙江大学电气工程学院,杭州310027 [2]国网浙江省电力有限公司,杭州310007 [3]国网浙江省电力有限公司湖州供电公司,湖州313000

出  处:《电力系统及其自动化学报》2025年第4期46-56,共11页Proceedings of the CSU-EPSA

基  金:国家电网公司科学技术项目(5108-202218280A-2-437-XG)。

摘  要:随着电网规模和复杂度的不断提升,研究多机复杂场景下电网振荡中心的存在机理及识别方法对保障电网的安全稳定运行具有重要意义。首先,基于网络特性论证电网源荷矩阵F_(LG)行和为1的结构性质,结合电网摇摆模式揭示多机电力网络系统振荡中心的存在机理;然后,根据电网节点依特征向量符号特征进行分群的特点,将节点电压的电势分量依特征向量进行矩阵分解,明晰暂态过程中振荡中心电势分量的演化规律,并结合节点域定理提出基于特征向量元素分布的振荡中心识别方法;最后,IEEE 3机9节点系统算例、IEEE 4机2区域系统算例和IEEE 10机39节点系统算例进一步验证了理论分析以及方法的有效性。With the increasing scale and complexity of power grid,the study of the existence mechanism of oscillation centers in a power grid under complex multi-machine scenarios and the corresponding identification method is of signifi-cance for ensuring the safe and stable operation of power grid.First,based on the network characteristics,the structur-al property of the source-load matrix FLG in which the sum of elements in the same row is equal to 1 is demonstrated,and the existence mechanism of oscillation centers in a multi-machine power system is clarified by combining the swing modes of power grid.Second,according to the characteristic that the node clustering is determined by the signs of eigen-vectors,the potential component of nodal voltage is decomposed according to the eigenvector.In addition,the evolution law of the potential component at the oscillation center in the transient process is analyzed,and an identification method for oscillation centers based on the distribution of elements in eigenvectors is proposed by combing the nodal domain theorem.Finally,an IEEE 3-machine 9-bus system,an IEEE 4-machine two-area system and an IEEE 10-machine 39-bus system are taken as numerical examples,and results further verify the theoretical analysis and the effectiveness of the proposed method.

关 键 词:振荡中心 矢量分解 特征向量 拉普拉斯矩阵 识别方法 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象