检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张玮锋 贺一[1] ZHANC Wei-feng;HE Yi(School of Journalism and Media,Chongqing Normal University,Chongqing 401331,China;School of Journalism and Communication,Beijing Normal University,Beijing 100091,China)
机构地区:[1]重庆师范大学新闻与传媒学院,重庆401331 [2]北京师范大学新闻传播学院,北京100091
出 处:《科学学研究》2025年第4期763-774,共12页Studies in Science of Science
基 金:重庆市研究生科研创新项目(CYS240375);中国科协研究生科普能力提升项目(KXYJS2024030)。
摘 要:社交媒体兴起使科学传播进入多主体创作的情境,特别是使得科学家与公民科学家更便捷地使用社交媒体进行科学传播,公众能够平等参与科学并进行互动,而两个主体之间是否会引起不同的公众参与模式尚不明确。本研究基于认知参与理论与情绪智力理论,对科学家与公民科学家科普视频的公众评论进行了深入分析,以揭示公众在观看两类视频时的认知参与度、情感反应对行为影响的差异。研究结果表明,观看科学家与公民科学家视频的公众均倾向于进行深层次的思考和讨论,但观看科学家视频的公众高认知更有助于提高行为参与,而观看公民科学家视频的公众偏离认知给低成本行为带来了更大的正向影响。“惊”情绪被证明是科学家视频中促进公众行为参与的关键情绪,反观公民科学家视频中的情感反应对行为参与的影响更为多样,不同情绪对行为参与的影响扮演着独特的角色。基于研究发现,分别对科学家与公民科学家在线科学传播活动提出建议以促进公众参与科学。The rise of social media has brought science communication into the context of multi-agent creation,especially making it more convenient for scientists and citizen scientists to use social media for science communication,and enabling the public to participate in science and interact with each other on an equal basis.However,it is not clear whether the two subjects will lead to different modes of public participation,which is particularly lacking in the current science communication background that emphasizes dialogue participation.Previous studies on social media public participation were more inclined to analyze surface participation indicators such as likes,comments and sharing,and less in-depth into public cognitive and emotional participation.Based on the theory of cognitive engagement and the theory of emotional intelligence,this study conducted an in-depth analysis of public comments on popular science videos of scientists and citizen scientists,in order to reveal the differences in the effects of cognitive engagement and emotional response on behavior of the public when watching the two types of videos.At the level of research design,python was used to collect 150 popular science videos from well-known scientists and citizen scientists on the Bilibili platform,and 644,011 comment samples were collected.A supervised machine learning text classification model was constructed based on the cognitive participation theory to conduct cognitive classification of public comments.Then,the emotional dictionary was used to calculate the emotional intensity of the public,and social media participation was defined as low cost and high cost.Then,multiple linear regression was used to analyze the influence of cognition and emotion on behavior.The results showed that the public who watched the videos of both scientists and citizen scientists tended to engage in in-depth thinking and discussion,but the high public perception of watching the videos of scientists was more conducive to improving behavioral engagement,while the
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38