检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈发堂[1] 刘泽 范子健 CHEN Fatang;LIU Ze;FAN Zijian(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Software Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065 [2]重庆邮电大学软件工程学院,重庆400065
出 处:《电讯技术》2025年第4期518-524,共7页Telecommunication Engineering
基 金:重庆市自然科学基金创新发展联合基金(中国星网)(CSTB2023NSCQ-LZX0114)。
摘 要:针对基于深度学习的调制识别方法存在的未利用原始信号顺序信息、识别率低、参数量大的问题,提出一种基于时空卷积网络(Spatiotemporal Convolutional Network,SCN)的调制识别算法。为防止信号的顺序信息的丢失,该网络先提取信号的时域特征,再提取信号的空间特征,其中时域特征提取采用时序卷积网络(Temporal Convolutional Network,TCN)结构,空间特征提取采用二维卷积神经网络(Two-Dimensional Convolution Neural Network,2D-CNN),最后的分类识别采用全局平均池化(Global Average Pooling,GAP)替代展平(Flatten)层。由于TCN中因果膨胀卷积和GAP的应用使网络高识别率的同时参数大幅减少。在未经预处理的IQ信号调制识别中,与传统的CNN2、ResNet、DenseNet、CLDNN和LSTM2相比,参数量最少,平均识别精度提升4.9%~16.5%。For the problems that modulation recognition methods based on deep learning do not utilize the original signal sequence information,the recognition rate is low,and the number of parameters is large,a modulation recognition algorithm based on Spatiotemporal Convolutional Network(SCN)is proposed.In order to prevent the loss of signal sequence information,the network first extracts the temporal features of the signal,and then extracts the spatial features of the signal.The temporal features are extracted using the Temporal Convolutional Network(TCN)structure.Two-Dimensional Convolution Neural Network(2DCNN)is used to extract spatial features.In the final classification,Global Average Pooling(GAP)is used to replace the Flatten layer.Due to the application of causal expansion convolution and GAP in TCN,the simultaneous parameters of high recognition rate are greatly reduced.Compared with that of the traditional CNN2,ResNet,DenseNet,CLDNN and LSTM2,the IQ signal modulation recognition without preprocessing has the lowest number of parameters,and the average recognition accuracy is improved by 4.9%~16.5%.
关 键 词:通信信号 调制识别 深度学习 时域特征 空间特征 全局平均池化
分 类 号:TN911.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38