基于IPSO优化的MPC轨迹跟踪控制研究  

Research on MPC Trajectory Tracking Control Based on IPSO Optimization

在线阅读下载全文

作  者:赵宇涵 Yuhan Zhao(School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai)

机构地区:[1]上海理工大学健康科学与工程学院,上海

出  处:《建模与仿真》2025年第3期306-316,共11页Modeling and Simulation

摘  要:针对机械臂轨迹跟踪过程中因外界干扰和固定控制器参数难以应对动态环境变化而导致的跟踪精度不足问题,本文提出了一种基于改进粒子群算法的机械臂自适应模型预测轨迹跟踪控制策略。通过机械臂动力学方程建立系统模型,并设计用于轨迹跟踪的模型预测控制器,引入粒子群优化算法对控制器中的权重系数进行在线调整。采用线性惯性权重下降策略,克服了传统粒子群算法易陷入局部最优的问题,同时提高了收敛速度。仿真实验结果表明,所提出的改进粒子群优化模型预测控制器具有更稳定、精准的跟踪性能,相较于原版控制器和传统粒子群优化控制器,关节角均方误差分别降低了33.85%和23.08%。To address the issue of insufficient tracking accuracy in robotic arm trajectory tracking due to ex-ternal disturbances and the inability of fixed controller parameters to adapt to dynamic environ-ments,this paper proposes an adaptive model predictive trajectory tracking control strategy based on an improved particle swarm optimization(PSO)algorithm.The system model is established us-ing the dynamic equations of the robotic arm,and a model predictive controller(MPC)is designed for trajectory tracking.The PSO algorithm is introduced to adjust the weight coefficients of the con-troller online.A linear inertia weight decay strategy is employed to mitigate the problem of tradi-tional PSO algorithms easily falling into local optima,while also improving convergence speed.Sim-ulation experiments demonstrate that the proposed improved PSO-based MPC achieves more stable and accurate tracking performance,with the mean squared error of joint angles reduced by 33.85%and 23.08%compared to the original controller and the traditional PSO-improved controller,re-spectively.

关 键 词:轨迹跟踪 模型预测控制 粒子群优化算法 机械臂 

分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象