Fine-Grained Point Cloud Intensity Correction Modeling Method Based on Mobile Laser Scanning  

在线阅读下载全文

作  者:Xu Liu Qiujie Li Youlin Xu Musaed Alhussein Khursheed Aurangzeb Fa Zhu 

机构地区:[1]College of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing,210037,China [2]Department of Computer Engineering,College of Computer and Information Sciences,King Saud University,P.O.Box 51178,Riyadh,11543,Saudi Arabia

出  处:《Computers, Materials & Continua》2025年第4期575-593,共19页计算机、材料和连续体(英文)

基  金:supported in part by the National Natural Science Foundation of China under grant number 31901239;funded by Researchers Supporting Project Number(RSPD2025R947),King Saud University,Riyadh,Saudi Arabia.

摘  要:The correction of Light Detection and Ranging(LiDAR)intensity data is of great significance for enhancing its application value.However,traditional intensity correction methods based on Terrestrial Laser Scanning(TLS)technology rely on manual site setup to collect intensity training data at different distances and incidence angles,which is noisy and limited in sample quantity,restricting the improvement of model accuracy.To overcome this limitation,this study proposes a fine-grained intensity correction modeling method based on Mobile Laser Scanning(MLS)technology.The method utilizes the continuous scanning characteristics of MLS technology to obtain dense point cloud intensity data at various distances and incidence angles.Then,a fine-grained screening strategy is employed to accurately select distance-intensity and incidence angle-intensity modeling samples.Finally,based on these samples,a high-precision intensity correction model is established through polynomial fitting functions.To verify the effectiveness of the proposed method,comparative experiments were designed,and the MLS modeling method was validated against the traditional TLS modeling method on the same test set.The results show that on Test Set 1,where the distance values vary widely(i.e.,0.1–3 m),the intensity consistency after correction using the MLS modeling method reached 7.692 times the original intensity,while the traditional TLS modeling method only increased to 4.630 times the original intensity.On Test Set 2,where the incidence angle values vary widely(i.e.,0○–80○),the MLS modeling method,although with a relatively smaller advantage,still improved the intensity consistency to 3.937 times the original intensity,slightly better than the TLS modeling method’s 3.413 times.These results demonstrate the significant advantage of the modeling method proposed in this study in enhancing the accuracy of intensity correction models.

关 键 词:LIDAR intensity correction mobile laser scanning distance and incidence angle MODELING 

分 类 号:P23[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象