检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田甜 TIAN Tian(College of Art Design,Shanghai Jian Qiao University,Shanghai 201306)
机构地区:[1]上海建桥学院,艺术设计学院,上海201306
出 处:《微型电脑应用》2025年第2期297-300,共4页Microcomputer Applications
摘 要:由于高质量发展的需要,人机交互系统需要完成难度更高、精度更高、更加复杂的任务。在现有的人机交互系统中,手势的分割与识别技术不足是限制人机交互系统向前发展的主要原因。因此,提高手势的分割与识别技术,是实现高效敏捷人机交互系统的关键因素。为实现更高质量的手势动作识别,利用改进后的卷积神经网络对手势动作进行分割与识别。利用数据库中的手势图像对模型进行性能测试。实验结果显示,研究提出的基于卷积神经网络手势分割与识别模型的准确率达到99.07%,具有较高的准确率和效率,可以有效提高手势动作分割与识别的质量,为人机交互系统的改进和应用提供支持。In view of the need for high-quality development,the human-computer interaction system needs to complete more difficult,accurate and complex tasks.In the existing human-computer interaction system,the lack of gesture segmentation and recognition technology is the main reason that restricts the development of human-computer interaction system.Therefore,the improvement of gesture segmentation and recognition technology is the key factor to achieve an efficient and agile human-computer interaction system.To achieve higher quality gesture recognition,the improved convolutional neural network is used to segment and recognize gesture movements.The performance of the model is tested using gesture images in the database.The experimental results show that the accuracy of the gesture segmentation and recognition model based on convolution neural network is 99.07%,which has high accuracy and efficiency,improves the quality of gesture segmentation and recognition,and provides support for the improvement and application of human-computer interaction system.
关 键 词:手势分割 手势识别 人机交互 深度学习 卷积神经网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33