手势分割与识别技术在人机交互系统中的应用  

Application of Gesture Segmentation and Recognition Technology in Human-computer Interaction System

在线阅读下载全文

作  者:田甜 TIAN Tian(College of Art Design,Shanghai Jian Qiao University,Shanghai 201306)

机构地区:[1]上海建桥学院,艺术设计学院,上海201306

出  处:《微型电脑应用》2025年第2期297-300,共4页Microcomputer Applications

摘  要:由于高质量发展的需要,人机交互系统需要完成难度更高、精度更高、更加复杂的任务。在现有的人机交互系统中,手势的分割与识别技术不足是限制人机交互系统向前发展的主要原因。因此,提高手势的分割与识别技术,是实现高效敏捷人机交互系统的关键因素。为实现更高质量的手势动作识别,利用改进后的卷积神经网络对手势动作进行分割与识别。利用数据库中的手势图像对模型进行性能测试。实验结果显示,研究提出的基于卷积神经网络手势分割与识别模型的准确率达到99.07%,具有较高的准确率和效率,可以有效提高手势动作分割与识别的质量,为人机交互系统的改进和应用提供支持。In view of the need for high-quality development,the human-computer interaction system needs to complete more difficult,accurate and complex tasks.In the existing human-computer interaction system,the lack of gesture segmentation and recognition technology is the main reason that restricts the development of human-computer interaction system.Therefore,the improvement of gesture segmentation and recognition technology is the key factor to achieve an efficient and agile human-computer interaction system.To achieve higher quality gesture recognition,the improved convolutional neural network is used to segment and recognize gesture movements.The performance of the model is tested using gesture images in the database.The experimental results show that the accuracy of the gesture segmentation and recognition model based on convolution neural network is 99.07%,which has high accuracy and efficiency,improves the quality of gesture segmentation and recognition,and provides support for the improvement and application of human-computer interaction system.

关 键 词:手势分割 手势识别 人机交互 深度学习 卷积神经网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象