检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韦金国 Wei Jinguo(Datang Guanyinyan Water and Electricity Development Co.,Ltd.,Panzhihua 617012,China)
机构地区:[1]大唐观音岩水电开发有限公司,四川攀枝花617012
出 处:《黑龙江科学》2025年第8期34-37,共4页Heilongjiang Science
摘 要:为提高变压器匝间短路故障诊断的准确率,确保变压器正常运行,提出基于量子粒子群优化算法(Quantum Particle Swarm Optimization, QPSO)和最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)相结合的变压器匝间短路故障诊断模型,分析现有变压器匝间短路故障诊断模型存在的问题,利用QPSO算法优化LSSVM模型的惩罚因子C和核参数g,构建QPSO-LSSVM故障诊断模型。以110 kV变压器匝间短路故障数据为算例样本,分别采用BP、LSTM、LSSVM、PSO-LSSVM和QPSO-LSSVM五种模型进行分析,分析结果表明,QPSO-LSSVM实现了变压器匝间短路故障的智能诊断,具有较好的泛化能力和较高的故障诊断精度,为电气设备的状态检测与故障诊断提供了一种有效的分析方法。To enhance the diagnosis accuracy of transformer inter-turn short circuit fault and ensure their normal operation,a diagnosis model based on the combination of Quantum Particle Swarm Optimization Algorithm(QPSO)and Least Squares Support Vector Machine(LSSVM)is proposed.The problem in existing transformer inter-turn short circuit fault diagnosis models is analyzed,so the QPSO algorithm is utilized to optimize the penalty factor C and the kernel parameter g in the LSSVM model,and a QPSO-LSSVM fault diagnosis model is constructed.Through taking a 110 kV transformer inter-turn short circuit fault data as a case sample,the performance of BP,LSTM,LSSVM,PSO-LSSVM and QPSO-LSSVM is analyzed.The diagnostic results show that the QPSO-LSSVM has achieved intelligent diagnosis of transformer inter-turn short circuit faults,with superior generalization ability and high fault diagnosis accuracy.This provides an effective analysis method for the condition monitoring and fault diagnosis of electrical equipment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49