基于改进YOLO v5s算法的红枣缺陷检测与分拣方法  

Defect detection and sorting method of jujube based on improved YOLO v5s algorithm

在线阅读下载全文

作  者:史鹏涛[1] 田政伟 李晓泽 危康乐 Shi Pengtao

机构地区:[1]陕西科技大学机电工程学院,陕西西安710021

出  处:《江苏农业科学》2025年第5期83-88,共6页Jiangsu Agricultural Sciences

基  金:陕西省重点研发计划(编号:2021NY-129)。

摘  要:针对当前生产活动中缺陷红枣的人工识别与分拣劳动强度大、效率低、分拣效果不理想的问题,设计一款基于机器视觉的红枣缺陷检测与分拣设备。首先建立多品种、多照明环境下的红枣缺陷检测样本图库,通过高斯滤波等数据增强技术增强了图像表面特征,并利用图库分析了红枣缺陷形貌和图像特征。然后针对训练后的YOLO v5s模型检测效果不理想的问题,分别通过引入锚框尺寸优化和添加预测头、引入注意力分配机制和学习率自适应等方法对网络进行了改进与优化,优化后模型训练效果准确率提高7百分点,对红枣缺陷检测的效果有明显增强,与当前热门的检测网络YOLO v3、YOLO v4和YOLO v4-tiny模型对比,YOLO v5s模型平均精度均值分别高7.4、2.3、5.7百分点。试验结果表明,改进后的红枣缺陷检测网络能够有效实现红枣缺陷识别,平均检测准确率达到85.3%,其中黄河滩枣检测准确率可达到87.5%,与分拣设备配合使用能够较好地完成红枣缺陷识别与分拣任务。本研究设计的缺陷检测与分拣平台能够为相关农产品的智能化检测与自动分拣装备的设计与研发提供借鉴和参考。

关 键 词:缺陷检测 机器视觉 自动分拣 YOLO v5s 红枣 

分 类 号:S126[农业科学—农业基础科学] TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象