检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庞世杰 韩晓明 PANG Shijie;HAN Xiaoming(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
机构地区:[1]太原理工大学电气与动力工程学院,太原030024
出 处:《轴承》2025年第5期102-110,共9页Bearing
基 金:山西省回国留学人员科研资助项目(2020-041)。
摘 要:为提高轴承剩余使用寿命(RUL)的预测精度和对预测结果进行不确定性量化,提出一种深度特征提取与随机退化过程交互联动的轴承RUL预测方法。首先,从振动信号中提取均方根等时域特征,并引入新的自上而下时间序列分割算法,将退化过程划分为多个阶段;其次,采用累积变换增强时域特征的趋势性,并将时域累积特征与振动信号傅里叶变换的频域特征作为深度特征提取网络的输入;然后,筛选在不同个体中有相似趋势的深度特征与表征退化阶段的模式特征进行融合构建健康指标;最后,通过目标函数建立特征提取模块与随机模型的联系,实现数模联动,并在PHM 2012轴承数据集上验证了该方法的优越性。In order to improve the prediction accuracy of Remaining Useful Life(RUL)of bearings and quantify the uncertainty of prediction results,a RUL prediction method for bearings is proposed based on interaction of deep feature extraction and Wiener degradation process.Firstly,the time-domain features such as root mean square are extracted from vibration signals,and a new top-down time series segmentation algorithm is introduced to divide the degradation process into multiple stages.Secondly,the cumulative transformation is used to enhance the tendency of time-domain features,the cumulative time-domain features and frequency-domain features of vibration signals after Fourier transform are used as inputs for deep feature extraction network.Then,the deep features exhibiting similar trends among different individuals are screened and fused with pattern features representing degradation stages to construct health indicators.Finally,the collaboration between feature extraction module and Wiener model is established by objective function to achieve data-model interaction,and the superiority of the method is verified on PHM 2012 bearing dataset.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49