检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨万里 宋娟 任烨 YANG Wanli;SON Juan;REN Ye(Shanghai Earthquake Agency,Shanghai 200062,China;Shanghai Sheshan Monitoring Geophysical Obsarvatory and Research Station,Shanghai 200062,China)
机构地区:[1]上海市地震局,上海200062 [2]上海佘山地球物理国家野外科学观测研究站,上海200062
出 处:《四川地震》2025年第2期46-51,共6页Earthquake Research in Sichuan
基 金:上海佘山地球物理国家野外科学观测研究站重点课题(SSKP202301)。
摘 要:为了获取地震灾后民众的情感变化情况,以关于2022年四川泸定Ms_(6).8地震的10万余条微博评论作为数据源,利用支持向量机(SVM)算法建立地震评价文本情感分类模型。通过多种核函数的模型比较,高斯核(g=0.3,C=10)时的SVM模型表现较好。通过此模型运算结果显示,泸定Ms_(6).8地震震后一个月内的微博评论具有阶段性特点,但均以正面评论为主。该方法可为地震舆情分析产品的开发打下基础,为有关部门舆情决策提供科学依据。To obtain the emotional changes of the public following an earthquake disaster,we used approximately 100000 comments from Weibo during the 2022 Luding M_(s)6.8 earthquake in Sichuan Province.Moreover,we established an emotional classification model for earthquake comments by using the support vector machine(SVM)algorithm.Furthermore,through comparing models with multiple kernel functions,we suggest that the SVM model under a Gaussian kernel(g=0.3,C=10)performs well.The calculation results of this model show that the Weibo comments within one month after the Luding M_(s)6.8 earthquake indicates phased characteristics highlighted by mainly positive comments.This method could serve as the foundation for the development of analysis products for public sentiment during earthquakes,which also provides a scientific basis for relevant departments'decision-making for public sentiment.
关 键 词:微博 支持向量机 地震 情感分类 2022年四川泸定M_(s)6.8地震
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49